Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/4855
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorKumova Meti̇n, Senem-
dc.contributor.authorGönençayoğlu, Merve-
dc.date.accessioned2023-10-24T08:10:13Z-
dc.date.available2023-10-24T08:10:13Z-
dc.date.issued2023-
dc.identifier.urihttps://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=a0OMTmEd_3mfOBxT8SiBTCf8Lm2742xppwQpM8Hx3nhlaOuXm63B2leDHAdc1V33-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/4855-
dc.description.abstractTeknolojinin gün geçtikçe gelişmesiyle birlikte insanlar online alışveriş platformlarını tercih etmektedir. Bu platformlarda e-ticaret şirketleri, metin formatında çok sayıda yorum almaktadır. Bu yorumların duygu analizine göre işlenmesi, müşteri memnuniyeti ve ürün kalitesinin sağlanması açısından önemlidir. Duygu analizi, müşterinin ihtiyaçları ve görüşleri hakkında değerli içgörüler sağlayabilir. Yıllar geçtikçe şirketler, müşteri deneyimini zenginleştirmenin yeni yollarını bulmuşlardır ve sistemlerine resim ekleme özelliği eklemişlerdir. Bu tezde, metin ve resim formatını birlikte kullanarak, farklı transfer öğrenme modellerinin müşteri yorumlarındaki duygu sınıflandırmasındaki başarısı incelenmiştir. Metin formatındaki başarıyı arttırmak için bir çoklu model yaklaşımı önerilmiştir. Çoklu model yaklaşımında metin için SBERT cümle vektörleri, görüntü için CLIP görüntü dönüştürücüleri kullanılmıştır. Bu yaklaşımda, en yüksek değerler dikkate alındığında %93.03 doğruluk ve %93.08 F1 performans değerlerine ulaşılmıştır.en_US
dc.description.abstractIt is undoubtedly true that people choose online shopping platforms as technology improves each day. E-commerce companies receive a huge number of valuable reviews in text format. Processing this data with respect to sentiment analysis is important for ensuring customer satisfaction and product quality. Sentiment analysis can give precious insights about customer's needs and opinions. Through the years, companies found new ways to enrich the customer experience and added image attachment feature to reviews. In this thesis, we examine the success of different transfer learning models on classifying sentiments of customer reviews and propose a multimodal approach to robust the success of text analysis. Our multimodal approach uses SBERT sentence embeddings for text and CLIP vision transformers for image. The final multimodal approach has 93.03% accuracy and 93.08% F1 considering the highest values.en_US]
dc.language.isoenen_US
dc.publisherİzmir Ekonomi Üniversitesien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolen_US
dc.subjectComputer Engineering and Computer Science and Controlen_US
dc.titleMultimodal analysis of customer reviews by transfer learningen_US
dc.title.alternativeTransfer öğrenme ile müşteri yorumlarinin çoklu model analizien_US
dc.typeMaster Thesisen_US
dc.departmentİEÜ, Lisansüstü Eğitim Enstitüsü, Bilgisayar Mühendisliği Ana Bilim Dalıen_US
dc.identifier.startpage1en_US
dc.identifier.endpage80en_US
dc.institutionauthorGönençayoğlu, Merve-
dc.relation.publicationcategoryTezen_US
dc.identifier.yoktezid810898en_US
item.grantfulltextopen-
item.openairetypeMaster Thesis-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
Appears in Collections:Lisansüstü Eğitim Enstitüsü Tez Koleksiyonu
Files in This Item:
File SizeFormat 
4855.pdf16.33 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

38
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.