Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/4860
Title: An efficient image dehazing for accurate object detection
Other Titles: Hassas nesne tanıma için etkili bir görüntü sis giderme yöntemi
Authors: Kaçmaz, Eray
Advisors: Türkan, Mehmet
Keywords: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol
Computer Engineering and Computer Science and Control
Publisher: İzmir Ekonomi Üniversitesi
Abstract: Hava olayı olarak bilinen "sis", dış manzarayı görme yeteneğini önemli ölçüde azaltır. Atmosferdeki ışığı emen ve ışığı saçan partiküller bunun başlıca nedenidir. Bu tez çalışması, hassas nesne tanımama için görüntü birleştirme tabanlı bir sis giderme yöntemi sunmaktadır. Birleştirme sürecini uygulamak için, her görüntünün her RGB katmanı için ağırlık haritaları, gama düzeltmesi yapılmış görüntüler kullanılarak hesaplanmaktadır. Daha doğru sonuçlar elde etmek için, füzyon işleminde girdiler için Laplace piramidi ve ağırlık haritaları için Gauss piramidi kombinasyonu kullanılmaktadır. Sisli girdi ve nihai çıktı görüntüleri, nesneleri doğru bir şekilde tespit etmek için YOLOv7 algoritmasında test edilmektedir. Geliştirilen yöntemi diğer yaklaşımlarla karşılaştırmak için kapsamlı testler yapılmıştır. Çeşitli sisli görüntüler üzerine sunulan sonuçlar, önerilen algoritmanın etkinliğini hem görsel hem de nicel olarak değerlendirerek yöntemin literatürdeki birçok öncü yönteme göre üstünlüğü sergilenmektedir.
The weather phenomenon known as "haze" significantly reduces the ability to see external scenery. The light-absorbing and light-scattering particulates mainly bring this on in the atmosphere. This thesis suggests a single image fusion-based dehazing method for precise object identification. To apply the fusion process, weight maps are computed for each RGB layer of each image using a collection of gamma-corrected images. To generate more accurate results, the combination of the Laplacian pyramid for inputs and the Gaussian pyramid for weight maps is used in the fusion process. Hazy input and final output images are tested in the YOLOv7 algorithm to detect objects accurately. Comprehensive tests are conducted to compare the proposed method with the other approaches. The experimental results on a range of hazy pictures demonstrate the prior's strength both visually and quantitatively, showcasing the superiority of the developed algorithm over several cutting-edge methods in the literature.
URI: https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=a0OMTmEd_3mfOBxT8SiBTOZ5rNGMqevkjal962xax8OIIytawSdiSOxiEL4Th2tB
https://hdl.handle.net/20.500.14365/4860
Appears in Collections:Lisansüstü Eğitim Enstitüsü Tez Koleksiyonu

Files in This Item:
File SizeFormat 
4860.pdf1.44 MBAdobe PDFView/Open
Show full item record



CORE Recommender

Page view(s)

156
checked on Nov 18, 2024

Download(s)

24
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.