Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/4902
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKılıçkaya, Sertaç-
dc.contributor.authorAhishali, M.-
dc.contributor.authorSohrab, F.-
dc.contributor.authorİnce, Türker-
dc.contributor.authorGabbouj, M.-
dc.date.accessioned2023-10-27T06:43:38Z-
dc.date.available2023-10-27T06:43:38Z-
dc.date.issued2023-
dc.identifier.isbn9798350312843-
dc.identifier.urihttps://doi.org/10.1109/PIERS59004.2023.10221460-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/4902-
dc.description2023 Photonics and Electromagnetics Research Symposium, PIERS 2023 -- 3 July 2023 through 6 July 2023 -- 192077en_US
dc.description.abstractHyperspectral image (HSI) classification is an important task in many applications, such as environmental monitoring, medical imaging, and land use/land cover (LULC) classification. Due to the significant amount of spectral information from recent HSI sensors, analyzing the acquired images is challenging using traditional Machine Learning (ML) methods. As the number of frequency bands increases, the required number of training samples increases exponentially to achieve a reasonable classification accuracy, also known as the curse of dimensionality. Therefore, separate band selection or dimensionality reduction techniques are often applied before performing any classification task over HSI data. In this study, we investigate recently proposed subspace learning methods for one-class classification (OCC). These methods map high-dimensional data to a lower-dimensional feature space that is optimized for one-class classification. In this way, there is no separate dimensionality reduction or feature selection procedure needed in the proposed classification framework. Moreover, one-class classifiers have the ability to learn a data description from the category of a single class only. Considering the imbalanced labels of the LULC classification problem and rich spectral information (high number of dimensions), the proposed classification approach is well-suited for HSI data. Overall, this is a pioneer study focusing on subspace learning-based one-class classification for HSI data. We analyze the performance of the proposed subspace learning one-class classifiers in the proposed pipeline. Our experiments validate that the proposed approach helps tackle the curse of dimensionality along with the imbalanced nature of HSI data. © 2023 IEEE.en_US
dc.description.sponsorshipFoundation for Economic Education, FEE: 220363en_US
dc.description.sponsorshipThis work was supported by the NSF-Business Finland project AMALIA. Foundation for Economic Education (Grant number: 220363) funded the work of Fahad Sohrab at Haltian.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2023 Photonics and Electromagnetics Research Symposium, PIERS 2023 - Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectClassification (of information)en_US
dc.subjectClustering algorithmsen_US
dc.subjectData descriptionen_US
dc.subjectHyperspectral imagingen_US
dc.subjectImage analysisen_US
dc.subjectImage classificationen_US
dc.subjectLearning systemsen_US
dc.subjectMedical imagingen_US
dc.subjectCurse of dimensionalityen_US
dc.subjectHyperspectral image analysisen_US
dc.subjectHyperspectral image classificationen_US
dc.subjectHyperspectral image datasen_US
dc.subjectLand cover classificationen_US
dc.subjectLand use/land coveren_US
dc.subjectOne-class Classificationen_US
dc.subjectOne-class classifieren_US
dc.subjectSpectral informationen_US
dc.subjectSubspace learningen_US
dc.subjectLand useen_US
dc.titleHyperspectral Image Analysis with Subspace Learning-based One-Class Classificationen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/PIERS59004.2023.10221460-
dc.identifier.scopus2-s2.0-85171987603en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57215414702-
dc.authorscopusid57201466019-
dc.authorscopusid57188863577-
dc.authorscopusid56259806600-
dc.authorscopusid7005332419-
dc.identifier.startpage953en_US
dc.identifier.endpage959en_US
dc.institutionauthor-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextopen-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
4902.pdf416.11 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 20, 2024

Page view(s)

138
checked on Nov 18, 2024

Download(s)

24
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.