Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/4903
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDevecioglu, O.C.-
dc.contributor.authorAhishali, M.-
dc.contributor.authorSohrab, F.-
dc.contributor.authorİnce, Türker-
dc.contributor.authorGabbouj, M.-
dc.date.accessioned2023-10-27T06:43:38Z-
dc.date.available2023-10-27T06:43:38Z-
dc.date.issued2023-
dc.identifier.isbn9798350312843-
dc.identifier.urihttps://doi.org/10.1109/PIERS59004.2023.10221241-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/4903-
dc.description2023 Photonics and Electromagnetics Research Symposium, PIERS 2023 -- 3 July 2023 through 6 July 2023 -- 192077en_US
dc.description.abstractAs a consequence of global warming and climate change, the risk and extent of wildfires have been increasing in many areas worldwide. Warmer temperatures and drier conditions can cause quickly spreading fires and make them harder to control; therefore, early detection and accurate locating of active fires are crucial in environmental monitoring. Using satellite imagery to monitor and detect active fires has been critical for managing forests and public land. Many traditional statistical-based methods and more recent deep-learning techniques have been proposed for active fire detection. In this study, we propose a novel approach called Operational U-Nets for the improved early detection of active fires. The proposed approach utilizes Self-Organized Operational Neural Network (Self-ONN) layers in a compact U-Net architecture. The preliminary experimental results demonstrate that Operational U-Nets not only achieve superior detection performance but can also significantly reduce computational complexity. © 2023 IEEE.en_US
dc.description.sponsorshipFoundation for Economic Education, FEE: 220363en_US
dc.description.sponsorshipThis work was supported by the NSF-Business Finland project AMALIA. Foundation for Economic Education (Grant number: 220363) funded the work of Fahad Sohrab at Haltian.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2023 Photonics and Electromagnetics Research Symposium, PIERS 2023 - Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDeep learningen_US
dc.subjectFire detectorsen_US
dc.subjectForestryen_US
dc.subjectGlobal warmingen_US
dc.subjectMultilayer neural networksen_US
dc.subjectSatellite imageryen_US
dc.subjectActive firesen_US
dc.subjectDry conditionen_US
dc.subjectEnvironmental Monitoringen_US
dc.subjectFire detectionen_US
dc.subjectForestlandsen_US
dc.subjectGlobal warming and climate changesen_US
dc.subjectLearning techniquesen_US
dc.subjectPublic landsen_US
dc.subjectTemperature conditionsen_US
dc.subjectWarm temperaturesen_US
dc.subjectFiresen_US
dc.titleImproved Active Fire Detection Using Operational U-netsen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/PIERS59004.2023.10221241-
dc.identifier.scopus2-s2.0-85172029036en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57215653815-
dc.authorscopusid57201466019-
dc.authorscopusid57188863577-
dc.authorscopusid56259806600-
dc.authorscopusid7005332419-
dc.identifier.startpage692en_US
dc.identifier.endpage697en_US
dc.institutionauthor-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextopen-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
4903.pdf669.33 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

226
checked on Nov 18, 2024

Download(s)

22
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.