Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/4996
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarabiber Cura, Özlem-
dc.contributor.authorTüre, H. Sabiha-
dc.contributor.authorAkan, Aydin-
dc.date.accessioned2023-12-26T07:28:38Z-
dc.date.available2023-12-26T07:28:38Z-
dc.date.issued2023-
dc.identifier.issn2619-9831-
dc.identifier.urihttps://doi.org/10.5152/electrica.2023.23029-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/4996-
dc.description.abstractAlzheimer's disease (AD), a neurological condition connected with aging, causes cognitive deterioration and has a substantial influence on a patient's daily activities. One of the most widely used clinical methods for examining how AD affects the brain is the electroencephalogram (EEG). Handcraft calculating descriptive features for machine learning algorithms requires time and frequently increases computational complexity. Deep networks provide a practical solution to feature extraction compared to handcraft feature extraction. The proposed work employs a time-frequency (TF) representation and a deep feature extraction-based approach to detect EEG segments in control subjects (CS) and AD patients. To create EEG segments'TF representations, high-resolution synchrosqueezing transform (SST) and traditional short-time Fourier transform (STFT) approaches are utilized. For deep feature extraction, SST and STFT magnitudes are used. The collected features are classified using a variety of classifiers to determine the EEG segments of CS and AD patients. In comparison to the SST method, the STFT-based deep feature extraction strategy produced improved classification accuracy between 79.56% and 92.96%.en_US
dc.language.isoenen_US
dc.publisherAVESen_US
dc.relation.ispartofElectricaen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAlzheimer's dementiaen_US
dc.subjectelectroencephalogram (EEG)en_US
dc.subjectsynchrosqueezing transform (SST)en_US
dc.subjectshort-time Fourier transform (STFT)en_US
dc.subjecttime-frequency analysisen_US
dc.subjectdeep feature extractionen_US
dc.subjectEeg Background Activityen_US
dc.subjectDisease Patientsen_US
dc.subjectNeural-Networken_US
dc.subjectDiagnosisen_US
dc.subjectComplexityen_US
dc.titleDetection of Alzheimer's Dementia by Using Deep Time-Frequency Feature Extractionen_US
dc.typeArticleen_US
dc.identifier.doi10.5152/electrica.2023.23029-
dc.identifier.scopus2-s2.0-85185538353en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.identifier.wosWOS:001119291400001en_US
dc.institutionauthor-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinid1253273en_US
dc.identifier.scopusqualityQ3-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
4996.pdf3.87 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

144
checked on Nov 18, 2024

Download(s)

72
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.