Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5018
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCura, O.K.-
dc.contributor.authorAtli, S.K.-
dc.contributor.authorŞen, Sena Yağmur-
dc.contributor.authorAkan, Aydın-
dc.date.accessioned2023-12-26T07:28:49Z-
dc.date.available2023-12-26T07:28:49Z-
dc.date.issued2023-
dc.identifier.isbn9789464593600-
dc.identifier.issn2219-5491-
dc.identifier.urihttps://doi.org/10.23919/EUSIPCO58844.2023.10289929-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5018-
dc.description31st European Signal Processing Conference, EUSIPCO 2023 -- 4 September 2023 through 8 September 2023 -- 194070en_US
dc.description.abstractAttention Deficit Hyperactivity Disorder (ADHD) is a neurological condition, typically manifesting in childhood. Behavioral studies are used to treat the illness, but there is no conclusive way to diagnose it. In order to comprehend changes in the brain, electroencephalography (EEG) signals of ADHD patients are frequently examined. In the proposed study, we introduced EEG feature maps (EEG-FM)-based image construction to be used as input to CNN architectures. To demonstrate the effectiveness of the proposed method, EEG data of 15 ADHD patients and 18 control subjects are analyzed and ADHD detection performance is demonstrated. EEG-FM-based images are obtained using both time domain features such as Hjorth parameters (activity, mobility, complexity), skewness, kurtosis, and peak-to-peak, and nonlinear features such as largest Lyapunov Exponent, correlation dimension, Hurst exponent, Katz fractal dimension, Higuchi fractal dimension, and approximation entropy. ResNet18 is trained using EEG-FM-based images and deep features are extracted for each image subset. Using the SVM classifier, the ADHD detection performance of the proposed approach is evaluated. Experimental results revealed that using EEG-FM-based images as input to ResNet architecture offers important benefits in identifying ADHD. © 2023 European Signal Processing Conference, EUSIPCO. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherEuropean Signal Processing Conference, EUSIPCOen_US
dc.relation.ispartofEuropean Signal Processing Conferenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAttention Deficit Hyperactivity Disorder (ADHD)en_US
dc.subjectdeep feature extractionen_US
dc.subjectEEG Feature mapsen_US
dc.subjectmachine learningen_US
dc.subjectBiomedical signal processingen_US
dc.subjectClassification (of information)en_US
dc.subjectDiseasesen_US
dc.subjectElectroencephalographyen_US
dc.subjectElectrophysiologyen_US
dc.subjectExtractionen_US
dc.subjectFractal dimensionen_US
dc.subjectFrequency modulationen_US
dc.subjectHigher order statisticsen_US
dc.subjectLyapunov methodsen_US
dc.subjectSupport vector machinesen_US
dc.subjectAttention deficit hyperactivity disorderen_US
dc.subjectConditionen_US
dc.subjectDeep feature extractionen_US
dc.subjectDetection performanceen_US
dc.subjectElectroencephalography feature mapen_US
dc.subjectFeature mapen_US
dc.subjectFeatures extractionen_US
dc.subjectMachine-learningen_US
dc.subjectMultiple featuresen_US
dc.subjectFeature extractionen_US
dc.titleClassification of ADHD by Using Multiple Feature Maps of EEG Signals and Deep Feature Extractionen_US
dc.typeConference Objecten_US
dc.identifier.doi10.23919/EUSIPCO58844.2023.10289929-
dc.identifier.scopus2-s2.0-85178375730en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57195223021-
dc.authorscopusid56709608600-
dc.authorscopusid57215314563-
dc.authorscopusid35617283100-
dc.identifier.startpage1065en_US
dc.identifier.endpage1069en_US
dc.institutionauthor-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextopen-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
AT-Ilave-5018.pdf1.7 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

54
checked on Nov 18, 2024

Download(s)

14
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.