Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5020
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPehlivan, Sude-
dc.contributor.authorAkdemir, Onur-
dc.contributor.authorCura, O.K.-
dc.contributor.authorAkbuğday, Burak-
dc.contributor.authorAkan, Aydın-
dc.date.accessioned2023-12-26T07:28:50Z-
dc.date.available2023-12-26T07:28:50Z-
dc.date.issued2023-
dc.identifier.isbn9789464593600-
dc.identifier.issn2219-5491-
dc.identifier.urihttps://doi.org/10.23919/EUSIPCO58844.2023.10289787-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5020-
dc.description31st European Signal Processing Conference, EUSIPCO 2023 -- 4 September 2023 through 8 September 2023 -- 194070en_US
dc.description.abstractAttention-Deficit/Hyperactivity Disorder (ADHD) is a common mental disorder affecting both children and adults. It is characterized by issues with concentration, hyperactivity, and impulsivity, which can interfere with everyday duties and interpersonal relationships. Although behavioral studies are utilized to treat the disease, there is no proven method for detecting it. The Electroencephalogram (EEG) is a non-invasive method that monitors electrical activity in the brain and is commonly used to identify neurological and mental illnesses such as ADHD. In this study, the topographic EEG feature maps (EEG-FMs) were obtained from 6 traditional time-domain characteristics known as Hjorth activity, Hjorth mobility, Hjorth complexity, kurtosis, and skewness. The feature maps were concatenated and used as input to Convolutional Neural Network (CNN) model for ADHD classification. To show the efficacy of the recommended approach, EEG data from 15 ADHD individuals and 18 control subjects (CS) were analyzed. The results showed that concatenated EEG-FMs were successful to classify ADHD with up to 99.72% accuracy. © 2023 European Signal Processing Conference, EUSIPCO. All rights reserved.en_US
dc.description.sponsorship2022-07en_US
dc.description.sponsorship*This study was partially supported by Izmir University of Economics, Scientific Research Projects Coordination Unit. Project number: 2022-07.en_US
dc.language.isoenen_US
dc.publisherEuropean Signal Processing Conference, EUSIPCOen_US
dc.relation.ispartofEuropean Signal Processing Conferenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAttention Deficit Hyperactivity Disorder (ADHD)en_US
dc.subjectConvolutional Neural Network (CNN)en_US
dc.subjectEEGen_US
dc.subjectFeature Mapen_US
dc.subjectBiomedical signal processingen_US
dc.subjectBrainen_US
dc.subjectConvolutionen_US
dc.subjectConvolutional neural networksen_US
dc.subjectDiseasesen_US
dc.subjectHigher order statisticsen_US
dc.subjectNoninvasive medical proceduresen_US
dc.subjectTime domain analysisen_US
dc.subjectAttention deficit hyperactivity disorderen_US
dc.subjectBehavioural studiesen_US
dc.subjectConvolutional neural networken_US
dc.subjectFeature mapen_US
dc.subjectInterpersonal relationshipen_US
dc.subjectMental disordersen_US
dc.subjectNoninvasive methodsen_US
dc.subjectTopographic featuresen_US
dc.subjectElectroencephalographyen_US
dc.titleCombinations of EEG Topographic Feature Maps for the Classification of ADHDen_US
dc.typeConference Objecten_US
dc.identifier.doi10.23919/EUSIPCO58844.2023.10289787-
dc.identifier.scopus2-s2.0-85178321257en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57215310544-
dc.authorscopusid58736909800-
dc.authorscopusid57195223021-
dc.authorscopusid57211987353-
dc.authorscopusid35617283100-
dc.identifier.startpage1195en_US
dc.identifier.endpage1199en_US
dc.institutionauthor-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextopen-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.02. Biomedical Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
AT-Ilave-5020.pdf966.54 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

Page view(s)

92
checked on Nov 18, 2024

Download(s)

92
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.