Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5138
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKochan, Necla-
dc.contributor.authorDayanç, Barış Emre-
dc.date.accessioned2024-01-26T19:42:31Z-
dc.date.available2024-01-26T19:42:31Z-
dc.date.issued2023-
dc.identifier.issn1300-0152-
dc.identifier.urihttps://doi.org/10.55730/1300-0152.2675-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5138-
dc.description.abstractBackground/aim: The molecular heterogeneity of colon cancer has made classification of tumors a requirement for effective treatment. One of the approaches for molecular subtyping of colon cancer patients is the consensus molecular subtypes (CMS), developed by the Colorectal Cancer Subtyping Consortium. CMS-specific RNA-Seq-dependent classification approaches are recent, with relatively low sensitivity and specificity. In this study, we aimed to classify patients into CMS groups using their RNA-seq profiles. Materials and methods: We first identified subtype-specific and survival-associated genes using the Fuzzy C-Means algorithm and log-rank test. We then classified patients using support vector machines with backward elimination methodology. Results: We optimized RNA-seq-based classification using 25 genes with a minimum classification error rate. In this study, we reported the classification performance using precision, sensitivity, specificity, false discovery rate, and balanced accuracy metrics. Conclusion: We present a gene list for colon cancer classification with minimum classification error rates and observed the lowest sensitivity but the highest specificity with CMS3-associated genes, which significantly differed due to the low number of patients in the clinic for this group. © TÜBİTAK.en_US
dc.language.isoenen_US
dc.publisherTUBITAKen_US
dc.relation.ispartofTurkish Journal of Biologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectclassificationen_US
dc.subjectcolon canceren_US
dc.subjectRNA-seqen_US
dc.subjectsupport vector machinesen_US
dc.titleClassification of Colon Cancer Patients Into Consensus Molecular Subtypes Using Support Vector Machinesen_US
dc.typeArticleen_US
dc.identifier.doi10.55730/1300-0152.2675-
dc.identifier.scopus2-s2.0-85182190043-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57222006264-
dc.authorscopusid23003874000-
dc.identifier.volume47en_US
dc.identifier.issue6en_US
dc.identifier.startpage406en_US
dc.identifier.endpage412en_US
dc.identifier.wosWOS:001143095000005-
dc.institutionauthor-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ4-
dc.identifier.wosqualityQ3-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
crisitem.author.dept02.02. Mathematics-
crisitem.author.dept09.01. Basic Medical Sciences-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
5138.pdf1.34 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.