Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5148
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarabağ, O.-
dc.contributor.authorBulut, Ö.-
dc.contributor.authorToy, A.Ö.-
dc.contributor.authorFadıloğlu, M.M.-
dc.date.accessioned2024-01-26T19:42:36Z-
dc.date.available2024-01-26T19:42:36Z-
dc.date.issued2024-
dc.identifier.issn0951-8320-
dc.identifier.urihttps://doi.org/10.1016/j.ress.2023.109914-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5148-
dc.description.abstractWith rapid advances in technology, many systems are becoming more complex, including ever-increasing numbers of components that are prone to failure. In most cases, it may not be feasible from a technical or economic standpoint to dedicate a sensor for each individual component to gauge its wear and tear. To make sure that these systems that may require large capitals are economically maintained, one should provide maintenance in a way that responds to captured sensor observations. This gives rise to condition-based maintenance in partially observable multi-component systems. In this study, we propose a novel methodology to manage maintenance interventions as well as spare part quantity decisions for such systems. Our methodology is based on reducing the state space of the multi-component system and optimizing the resulting reduced-state Markov decision process via a linear programming approach. This methodology is highly scalable and capable of solving large problems that cannot be approached with the previously existing solution procedures. © 2023 The Author(s)en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofReliability Engineering and System Safetyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCondition-based maintenanceen_US
dc.subjectLinear programmingen_US
dc.subjectMarkov decision processen_US
dc.subjectPartially observable systemsen_US
dc.subjectSpare part quantityen_US
dc.subjectStochastic degradationen_US
dc.subjectCondition based maintenanceen_US
dc.subjectMarkov processesen_US
dc.subjectStochastic systemsen_US
dc.subjectCondition based maintenanceen_US
dc.subjectLinear-programmingen_US
dc.subjectMarkov Decision Processesen_US
dc.subjectMulticomponents systemsen_US
dc.subjectNumber of componentsen_US
dc.subjectOptimal maintenanceen_US
dc.subjectPartially observable systemsen_US
dc.subjectSpare part quantityen_US
dc.subjectSpare partsen_US
dc.subjectStochastic degradationen_US
dc.subjectLinear programmingen_US
dc.titleAn efficient procedure for optimal maintenance intervention in partially observable multi-component systemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ress.2023.109914-
dc.identifier.scopus2-s2.0-85181763817en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57196390808-
dc.authorscopusid35168573500-
dc.authorscopusid14521673500-
dc.authorscopusid6602212401-
dc.identifier.volume244en_US
dc.identifier.wosWOS:001154917100001en_US
dc.institutionauthor-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.09. Industrial Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
5148.pdf649.64 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 20, 2024

Page view(s)

82
checked on Nov 18, 2024

Download(s)

40
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.