Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5148
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarabağ, O.-
dc.contributor.authorBulut, Ö.-
dc.contributor.authorToy, A.Ö.-
dc.contributor.authorFadıloğlu, M.M.-
dc.date.accessioned2024-01-26T19:42:36Z-
dc.date.available2024-01-26T19:42:36Z-
dc.date.issued2024-
dc.identifier.issn0951-8320-
dc.identifier.urihttps://doi.org/10.1016/j.ress.2023.109914-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5148-
dc.description.abstractWith rapid advances in technology, many systems are becoming more complex, including ever-increasing numbers of components that are prone to failure. In most cases, it may not be feasible from a technical or economic standpoint to dedicate a sensor for each individual component to gauge its wear and tear. To make sure that these systems that may require large capitals are economically maintained, one should provide maintenance in a way that responds to captured sensor observations. This gives rise to condition-based maintenance in partially observable multi-component systems. In this study, we propose a novel methodology to manage maintenance interventions as well as spare part quantity decisions for such systems. Our methodology is based on reducing the state space of the multi-component system and optimizing the resulting reduced-state Markov decision process via a linear programming approach. This methodology is highly scalable and capable of solving large problems that cannot be approached with the previously existing solution procedures. © 2023 The Author(s)en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofReliability Engineering and System Safetyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCondition-based maintenanceen_US
dc.subjectLinear programmingen_US
dc.subjectMarkov decision processen_US
dc.subjectPartially observable systemsen_US
dc.subjectSpare part quantityen_US
dc.subjectStochastic degradationen_US
dc.subjectCondition based maintenanceen_US
dc.subjectMarkov processesen_US
dc.subjectStochastic systemsen_US
dc.subjectCondition based maintenanceen_US
dc.subjectLinear-programmingen_US
dc.subjectMarkov Decision Processesen_US
dc.subjectMulticomponents systemsen_US
dc.subjectNumber of componentsen_US
dc.subjectOptimal maintenanceen_US
dc.subjectPartially observable systemsen_US
dc.subjectSpare part quantityen_US
dc.subjectSpare partsen_US
dc.subjectStochastic degradationen_US
dc.subjectLinear programmingen_US
dc.titleAn Efficient Procedure for Optimal Maintenance Intervention in Partially Observable Multi-Component Systemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ress.2023.109914-
dc.identifier.scopus2-s2.0-85181763817-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57196390808-
dc.authorscopusid35168573500-
dc.authorscopusid14521673500-
dc.authorscopusid6602212401-
dc.identifier.volume244en_US
dc.identifier.wosWOS:001154917100001-
dc.institutionauthor-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.dept05.09. Industrial Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
5148.pdf649.64 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.