Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/5148
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Karabağ, O. | - |
dc.contributor.author | Bulut, Ö. | - |
dc.contributor.author | Toy, A.Ö. | - |
dc.contributor.author | Fadıloğlu, M.M. | - |
dc.date.accessioned | 2024-01-26T19:42:36Z | - |
dc.date.available | 2024-01-26T19:42:36Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 0951-8320 | - |
dc.identifier.uri | https://doi.org/10.1016/j.ress.2023.109914 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/5148 | - |
dc.description.abstract | With rapid advances in technology, many systems are becoming more complex, including ever-increasing numbers of components that are prone to failure. In most cases, it may not be feasible from a technical or economic standpoint to dedicate a sensor for each individual component to gauge its wear and tear. To make sure that these systems that may require large capitals are economically maintained, one should provide maintenance in a way that responds to captured sensor observations. This gives rise to condition-based maintenance in partially observable multi-component systems. In this study, we propose a novel methodology to manage maintenance interventions as well as spare part quantity decisions for such systems. Our methodology is based on reducing the state space of the multi-component system and optimizing the resulting reduced-state Markov decision process via a linear programming approach. This methodology is highly scalable and capable of solving large problems that cannot be approached with the previously existing solution procedures. © 2023 The Author(s) | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Ltd | en_US |
dc.relation.ispartof | Reliability Engineering and System Safety | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Condition-based maintenance | en_US |
dc.subject | Linear programming | en_US |
dc.subject | Markov decision process | en_US |
dc.subject | Partially observable systems | en_US |
dc.subject | Spare part quantity | en_US |
dc.subject | Stochastic degradation | en_US |
dc.subject | Condition based maintenance | en_US |
dc.subject | Markov processes | en_US |
dc.subject | Stochastic systems | en_US |
dc.subject | Condition based maintenance | en_US |
dc.subject | Linear-programming | en_US |
dc.subject | Markov Decision Processes | en_US |
dc.subject | Multicomponents systems | en_US |
dc.subject | Number of components | en_US |
dc.subject | Optimal maintenance | en_US |
dc.subject | Partially observable systems | en_US |
dc.subject | Spare part quantity | en_US |
dc.subject | Spare parts | en_US |
dc.subject | Stochastic degradation | en_US |
dc.subject | Linear programming | en_US |
dc.title | An efficient procedure for optimal maintenance intervention in partially observable multi-component systems | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.ress.2023.109914 | - |
dc.identifier.scopus | 2-s2.0-85181763817 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorscopusid | 57196390808 | - |
dc.authorscopusid | 35168573500 | - |
dc.authorscopusid | 14521673500 | - |
dc.authorscopusid | 6602212401 | - |
dc.identifier.volume | 244 | en_US |
dc.identifier.wos | WOS:001154917100001 | en_US |
dc.institutionauthor | … | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.identifier.wosquality | Q1 | - |
item.grantfulltext | open | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.09. Industrial Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
2
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
2
checked on Nov 20, 2024
Page view(s)
82
checked on Nov 18, 2024
Download(s)
40
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.