Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5155
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKoçhan, Necla-
dc.contributor.authorDayanç, Barış Emre-
dc.date.accessioned2024-01-26T19:42:39Z-
dc.date.available2024-01-26T19:42:39Z-
dc.date.issued2023-
dc.identifier.issn1300-0152-
dc.identifier.issn1303-6092-
dc.identifier.urihttps://doi.org/10.55730/1300-0152.2674-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/1220937-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5155-
dc.description.abstractBackground/aim: The molecular heterogeneity of colon cancer has made classification of tumors a requirement for effective treatment. One of the approaches for molecular subtyping of colon cancer patients is the consensus molecular subtypes (CMS), developed by the Colorectal Cancer Subtyping Consortium. CMS-specific RNA-Seq-dependent classification approaches are recent, with relatively low sensitivity and specificity. In this study, we aimed to classify patients into CMS groups using their RNA-seq profiles. Materials and methods: We first identified subtype-specific and survival-associated genes using the Fuzzy C-Means algorithm and log- rank test. We then classified patients using support vector machines with backward elimination methodology. Results: We optimized RNA-seq-based classification using 25 genes with a minimum classification error rate. In this study, we reported the classification performance using precision, sensitivity, specificity, false discovery rate, and balanced accuracy metrics. Conclusion: We present a gene list for colon cancer classification with minimum classification error rates and observed the lowest sensitivity but the highest specificity with CMS3-associated genes, which significantly differed due to the low number of patients in the clinic for this group.en_US
dc.language.isoenen_US
dc.relation.ispartofTurkish Journal of Biologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleClassification of colon cancer patients into consensus molecular subtypes using support vector machinesen_US
dc.typeArticleen_US
dc.identifier.doi10.55730/1300-0152.2674-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.identifier.volume47en_US
dc.identifier.issue6en_US
dc.identifier.startpage406en_US
dc.identifier.endpage412en_US
dc.institutionauthor-
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinid1220937en_US
dc.identifier.scopusqualityQ3-
dc.identifier.wosqualityQ3-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Mathematics-
crisitem.author.dept09.01. Basic Medical Sciences-
Appears in Collections:TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
Files in This Item:
File SizeFormat 
5155.pdf1.21 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

176
checked on Nov 18, 2024

Download(s)

18
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.