Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/5216
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Akbuğday, Burak | - |
dc.contributor.author | Akbugday, S.P. | - |
dc.contributor.author | Sadikzade, R. | - |
dc.contributor.author | Akan, A. | - |
dc.contributor.author | Unal, S. | - |
dc.date.accessioned | 2024-03-30T11:20:56Z | - |
dc.date.available | 2024-03-30T11:20:56Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 2619-9831 | - |
dc.identifier.uri | https://doi.org/10.5152/electrica.2024.23111 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/5216 | - |
dc.description.abstract | The investigation of olfactory stimuli has become more prominent in the context of neuromarketing research over the last couple of years. Although a few studies suggest that olfactory stimuli are linked with consumer behavior and can be observed in various ways, such as via electroencephalogram (EEG), a universal method for the detection of olfactory stimuli has not been established yet. In this study, 14-channel EEG signals acquired from participants while they were presented with 2 identical boxes, scented and unscented, were processed to extract several linear and nonlinear features. Two approaches are presented for the classification of scented and unscented cases: i) using machine learning (ML) methods utilizing extracted features; ii) using deep learning (DL) methods utilizing relative sub-band power topographic heat map images. Experimental results suggest that the olfactory stimulus can be successfully detected with up to 92% accuracy by the proposed method. Furthermore, it is shown that topographic heat maps can accurately depict the response of the brain to olfactory stimuli. © 2024 Istanbul University. All rights reserved. | en_US |
dc.description.sponsorship | BAP2022-07 | en_US |
dc.language.iso | en | en_US |
dc.publisher | Istanbul University | en_US |
dc.relation.ispartof | Electrica | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Deep Learning | en_US |
dc.subject | electroencephalogram (EEG) | en_US |
dc.subject | machine learning | en_US |
dc.subject | neuro-marketing | en_US |
dc.subject | olfactory stimulus | en_US |
dc.subject | Consumer behavior | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Learning systems | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Electroencephalogram | en_US |
dc.subject | Electroencephalogram signals | en_US |
dc.subject | Heat maps | en_US |
dc.subject | Learning methods | en_US |
dc.subject | Machine-learning | en_US |
dc.subject | Neuro-marketing | en_US |
dc.subject | Neuromarketing | en_US |
dc.subject | Olfactory stimulus | en_US |
dc.subject | Universal method | en_US |
dc.subject | Electroencephalography | en_US |
dc.title | Detection of Olfactory Stimulus in Electroencephalogram Signals Using Machine and Deep Learning Methods | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.5152/electrica.2024.23111 | - |
dc.identifier.scopus | 2-s2.0-85185530677 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorscopusid | 57211987353 | - |
dc.authorscopusid | 58821521400 | - |
dc.authorscopusid | 58821594100 | - |
dc.authorscopusid | 35617283100 | - |
dc.authorscopusid | 43462177900 | - |
dc.identifier.volume | 24 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 175 | en_US |
dc.identifier.endpage | 182 | en_US |
dc.identifier.wos | WOS:001275870300016 | en_US |
dc.institutionauthor | … | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.trdizinid | 1253415 | en_US |
dc.identifier.scopusquality | Q3 | - |
item.grantfulltext | reserved | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
5216.pdf Restricted Access | 2.81 MB | Adobe PDF | View/Open Request a copy |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.