Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/5217
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kırmızıay, Çağatay | - |
dc.contributor.author | Aydeniz, Burhan | - |
dc.contributor.author | Türkan, Mehmet | - |
dc.date.accessioned | 2024-03-30T11:20:56Z | - |
dc.date.available | 2024-03-30T11:20:56Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 2619-9831 | - |
dc.identifier.uri | https://doi.org/10.5152/electrica.2024.23027 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/5217 | - |
dc.description.abstract | One of the difficulties in studying fluorescence imaging of biological structures is the presence of noise corruption. Even though hardware- and software-related technologies have undergone continual improvement, the unavoidable effect of Poisson–Gaussian mixture type is generally encountered in fluorescence microscopy images. This noise should be mitigated to allow the extraction of valuable information from fluorescence images for various types of biological analysis. Thus, this study introduces a new and efficient learning-based denoizing approach for fluorescence microscopy. The proposed approach is based mainly on linear transformations between noise-free and noisy submanifold structures of patch spaces, benefiting from linear neighbor embeddings of local image patches. According to visual and statistical results, the developed algorithm called "neighbor linear-embedding denoizing" algorithm has a highly competitive and generally superior performance in comparison with the other algorithms used for fluorescence microscopy image denoizing in the literature. © 2024 Istanbul University. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Istanbul University | en_US |
dc.relation.ispartof | Electrica | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Denoizing | en_US |
dc.subject | fluorescence microscopy | en_US |
dc.subject | linear embedding | en_US |
dc.subject | neighbor linear embedding | en_US |
dc.subject | Embeddings | en_US |
dc.subject | Fluorescence imaging | en_US |
dc.subject | Image denoising | en_US |
dc.subject | Image enhancement | en_US |
dc.subject | Linear transformations | en_US |
dc.subject | Biological structures | en_US |
dc.subject | Denoizing | en_US |
dc.subject | Fluorescence imaging | en_US |
dc.subject | Fluorescence microscopy images | en_US |
dc.subject | Gaussian-mixtures | en_US |
dc.subject | Hardware and software | en_US |
dc.subject | Linear embedding | en_US |
dc.subject | Neighbor linear embedding | en_US |
dc.subject | Noise corruption | en_US |
dc.subject | Fluorescence microscopy | en_US |
dc.title | Fluorescence Microscopy Denoizing via Neighbor Linear Embedding | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.5152/electrica.2024.23027 | - |
dc.identifier.scopus | 2-s2.0-85185533544 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorscopusid | 58018306000 | - |
dc.authorscopusid | 57209740516 | - |
dc.authorscopusid | 57219464962 | - |
dc.identifier.volume | 24 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 51 | en_US |
dc.identifier.endpage | 59 | en_US |
dc.identifier.wos | WOS:001275870300005 | en_US |
dc.institutionauthor | … | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.trdizinid | 1253268 | en_US |
dc.identifier.scopusquality | Q3 | - |
item.grantfulltext | reserved | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
5217.pdf Restricted Access | 4.66 MB | Adobe PDF | View/Open Request a copy |
CORE Recommender
Page view(s)
88
checked on Nov 18, 2024
Download(s)
2
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.