Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5217
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKırmızıay, Çağatay-
dc.contributor.authorAydeniz, Burhan-
dc.contributor.authorTürkan, Mehmet-
dc.date.accessioned2024-03-30T11:20:56Z-
dc.date.available2024-03-30T11:20:56Z-
dc.date.issued2024-
dc.identifier.issn2619-9831-
dc.identifier.urihttps://doi.org/10.5152/electrica.2024.23027-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5217-
dc.description.abstractOne of the difficulties in studying fluorescence imaging of biological structures is the presence of noise corruption. Even though hardware- and software-related technologies have undergone continual improvement, the unavoidable effect of Poisson–Gaussian mixture type is generally encountered in fluorescence microscopy images. This noise should be mitigated to allow the extraction of valuable information from fluorescence images for various types of biological analysis. Thus, this study introduces a new and efficient learning-based denoizing approach for fluorescence microscopy. The proposed approach is based mainly on linear transformations between noise-free and noisy submanifold structures of patch spaces, benefiting from linear neighbor embeddings of local image patches. According to visual and statistical results, the developed algorithm called "neighbor linear-embedding denoizing" algorithm has a highly competitive and generally superior performance in comparison with the other algorithms used for fluorescence microscopy image denoizing in the literature. © 2024 Istanbul University. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherIstanbul Universityen_US
dc.relation.ispartofElectricaen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDenoizingen_US
dc.subjectfluorescence microscopyen_US
dc.subjectlinear embeddingen_US
dc.subjectneighbor linear embeddingen_US
dc.subjectEmbeddingsen_US
dc.subjectFluorescence imagingen_US
dc.subjectImage denoisingen_US
dc.subjectImage enhancementen_US
dc.subjectLinear transformationsen_US
dc.subjectBiological structuresen_US
dc.subjectDenoizingen_US
dc.subjectFluorescence imagingen_US
dc.subjectFluorescence microscopy imagesen_US
dc.subjectGaussian-mixturesen_US
dc.subjectHardware and softwareen_US
dc.subjectLinear embeddingen_US
dc.subjectNeighbor linear embeddingen_US
dc.subjectNoise corruptionen_US
dc.subjectFluorescence microscopyen_US
dc.titleFluorescence Microscopy Denoizing via Neighbor Linear Embeddingen_US
dc.typeArticleen_US
dc.identifier.doi10.5152/electrica.2024.23027-
dc.identifier.scopus2-s2.0-85185533544en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid58018306000-
dc.authorscopusid57209740516-
dc.authorscopusid57219464962-
dc.identifier.volume24en_US
dc.identifier.issue1en_US
dc.identifier.startpage51en_US
dc.identifier.endpage59en_US
dc.identifier.wosWOS:001275870300005en_US
dc.institutionauthor-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinid1253268en_US
dc.identifier.scopusqualityQ3-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
5217.pdf
  Restricted Access
4.66 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

88
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.