Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5384
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKiranyaz S.-
dc.contributor.authorDevecioglu O.C.-
dc.contributor.authorAlhams A.-
dc.contributor.authorSassi S.-
dc.contributor.authorInce T.-
dc.contributor.authorAvci O.-
dc.contributor.authorGabbouj M.-
dc.date.accessioned2024-06-29T13:07:43Z-
dc.date.available2024-06-29T13:07:43Z-
dc.date.issued2024-
dc.identifier.issn1530-437X-
dc.identifier.urihttps://doi.org/10.1109/JSEN.2024.3405889-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5384-
dc.description.abstractRobust and real-time detection of faults has become an ultimate objective for predictive maintenance on rotating machinery. Vibration-based Deep Learning (DL) methodologies have become the <italic>de facto</italic> standard for bearing fault detection as they can produce state-of-the-art detection performances under certain conditions. Despite such particular focus on the vibration signal, the utilization of sound, on the other hand, has been widely neglected. As a result, no large-scale benchmark motor fault dataset exists with both sound and vibration data. The novel and significant contributions of this study can be summarized as follows. This study presents and publically shares the <italic>Qatar University Dual-Machine Bearing Fault Benchmark</italic> dataset (QU-DMBF), which encapsulates sound and vibration data from two different motors operating under 1080 working conditions. Then, we focus on the major limitations and drawbacks of vibration-based fault detection due to numerous installation and operational conditions. Finally, we propose the first DL approach for sound-based fault detection and perform comparative evaluations between the sound and vibration signals over the QU-DMBF dataset. A wide range of experimental results shows that the sound-based fault detection method is significantly more robust than its vibration-based counterpart, as it is entirely independent of the sensor location, cost-effective (requiring no sensor and sensor maintenance), and can achieve the same level of the best detection performance by its vibration-based counterpart. This study publicly shares the QU-DMBF dataset, the optimized source codes in PyTorch, and comparative evaluations with the research community. Authorsen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofIEEE Sensors Journalen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBearing Fault Detectionen_US
dc.subjectFault detectionen_US
dc.subjectKernelen_US
dc.subjectMachine Health Monitoringen_US
dc.subjectMachineryen_US
dc.subjectMotorsen_US
dc.subjectNeuronsen_US
dc.subjectOperational Neural Networksen_US
dc.subjectSensorsen_US
dc.subjectVibrationsen_US
dc.subjectCost effectivenessen_US
dc.subjectDeep learningen_US
dc.subjectRotating machineryen_US
dc.subjectBearing faulten_US
dc.subjectBearing fault detectionen_US
dc.subjectFaults detectionen_US
dc.subjectKernelen_US
dc.subjectMachine bearingen_US
dc.subjectMachine health monitoringen_US
dc.subjectNeural-networksen_US
dc.subjectOperational neural networken_US
dc.subjectQatar universityen_US
dc.subjectVibrationen_US
dc.subjectFault detectionen_US
dc.titleExploring Sound <italic>vs</italic> Vibration for Robust Fault Detection on Rotating Machineryen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/JSEN.2024.3405889-
dc.identifier.scopus2-s2.0-85195391053en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid7801632948-
dc.authorscopusid57215653815-
dc.authorscopusid58032488100-
dc.authorscopusid7004753250-
dc.authorscopusid56259806600-
dc.authorscopusid6701761980-
dc.authorscopusid7005332419-
dc.identifier.startpage1en_US
dc.identifier.endpage1en_US
dc.institutionauthor-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
5384.pdf14.71 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

Page view(s)

250
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.