Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/5473
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Celebioglu, C. | - |
dc.contributor.author | Topalli, A.K. | - |
dc.date.accessioned | 2024-08-25T15:14:06Z | - |
dc.date.available | 2024-08-25T15:14:06Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 0928-7329 | - |
dc.identifier.uri | https://doi.org/10.3233/THC-240167 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/5473 | - |
dc.description.abstract | BACKGROUND: Incubators, especially the ones for babies, require continuous monitoring for anomaly detection and taking action when necessary. OBJECTIVE: This study aims to introduce a system in which important information such as temperature, humidity and gas values being tracked from incubator environment continuously in real-time. METHOD: Multiple sensors, a microcontroller, a transmission module, a cloud server, a mobile application, and a Web application were integrated Data were made accessible to the duty personnel both remotely via Wi-Fi and in the range of the sensors via Bluetooth Low Energy technologies. In addition, potential emergencies were detected and alarm notifications were created utilising a machine learning algorithm. The mobile application receiving the data from the sensors via Bluetooth was designed such a way that it stores the data internally in case of Internet disruption, and transfers the data when the connection is restored. RESULTS: The obtained results reveal that a neural network structure with sensor measurements from the last hour gives the best prediction for the next hour measurement. CONCLUSION: The affordable hardware and software used in this system make it beneficial, especially in the health sector, in which the close monitoring of baby incubators is vitally important. © 2024 – IOS Press. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IOS Press BV | en_US |
dc.relation.ispartof | Technology and Health Care | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Biomedical | en_US |
dc.subject | child wellbeing | en_US |
dc.subject | cloud service | en_US |
dc.subject | healthcare | en_US |
dc.subject | incubators | en_US |
dc.subject | machine learning | en_US |
dc.subject | mobile applications | en_US |
dc.subject | web application | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Clinical Alarms | en_US |
dc.subject | Cloud Computing | en_US |
dc.subject | Humans | en_US |
dc.subject | Humidity | en_US |
dc.subject | Incubators, Infant | en_US |
dc.subject | Infant, Newborn | en_US |
dc.subject | Internet of Things | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Mobile Applications | en_US |
dc.subject | Monitoring, Physiologic | en_US |
dc.subject | Neural Networks, Computer | en_US |
dc.subject | Temperature | en_US |
dc.subject | Wireless Technology | en_US |
dc.subject | alcohol | en_US |
dc.subject | butane | en_US |
dc.subject | methane | en_US |
dc.subject | propane | en_US |
dc.subject | air conditioning | en_US |
dc.subject | alarm monitoring | en_US |
dc.subject | ambient air | en_US |
dc.subject | Article | en_US |
dc.subject | cloud computing | en_US |
dc.subject | data integration | en_US |
dc.subject | gas | en_US |
dc.subject | heating | en_US |
dc.subject | human | en_US |
dc.subject | humidity | en_US |
dc.subject | Internet | en_US |
dc.subject | internet of things | en_US |
dc.subject | machine learning | en_US |
dc.subject | measurement | en_US |
dc.subject | newborn monitoring | en_US |
dc.subject | outlier detection | en_US |
dc.subject | software | en_US |
dc.subject | temperature | en_US |
dc.subject | temperature measurement | en_US |
dc.subject | weather | en_US |
dc.subject | alarm monitor | en_US |
dc.subject | algorithm | en_US |
dc.subject | artificial neural network | en_US |
dc.subject | devices | en_US |
dc.subject | internet of things | en_US |
dc.subject | mobile application | en_US |
dc.subject | neonatal incubator | en_US |
dc.subject | newborn | en_US |
dc.subject | physiologic monitoring | en_US |
dc.subject | procedures | en_US |
dc.subject | wireless communication | en_US |
dc.title | IoT-based incubator monitoring and machine learning powered alarm predictions | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3233/THC-240167 | - |
dc.identifier.pmid | 38517825 | en_US |
dc.identifier.scopus | 2-s2.0-85198678526 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorscopusid | 59227101900 | - |
dc.authorscopusid | 6506871373 | - |
dc.identifier.volume | 32 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 2837 | en_US |
dc.identifier.endpage | 2846 | en_US |
dc.identifier.wos | WOS:001283885400058 | en_US |
dc.institutionauthor | … | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q4 | - |
dc.identifier.wosquality | Q4 | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.