Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/5473
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Celebioglu, C. | - |
dc.contributor.author | Topalli, A.K. | - |
dc.date.accessioned | 2024-08-25T15:14:06Z | - |
dc.date.available | 2024-08-25T15:14:06Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 0928-7329 | - |
dc.identifier.uri | https://doi.org/10.3233/THC-240167 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/5473 | - |
dc.description.abstract | BACKGROUND: Incubators, especially the ones for babies, require continuous monitoring for anomaly detection and taking action when necessary. OBJECTIVE: This study aims to introduce a system in which important information such as temperature, humidity and gas values being tracked from incubator environment continuously in real-time. METHOD: Multiple sensors, a microcontroller, a transmission module, a cloud server, a mobile application, and a Web application were integrated Data were made accessible to the duty personnel both remotely via Wi-Fi and in the range of the sensors via Bluetooth Low Energy technologies. In addition, potential emergencies were detected and alarm notifications were created utilising a machine learning algorithm. The mobile application receiving the data from the sensors via Bluetooth was designed such a way that it stores the data internally in case of Internet disruption, and transfers the data when the connection is restored. RESULTS: The obtained results reveal that a neural network structure with sensor measurements from the last hour gives the best prediction for the next hour measurement. CONCLUSION: The affordable hardware and software used in this system make it beneficial, especially in the health sector, in which the close monitoring of baby incubators is vitally important. © 2024 – IOS Press. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IOS Press BV | en_US |
dc.relation.ispartof | Technology and Health Care | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Biomedical | en_US |
dc.subject | child wellbeing | en_US |
dc.subject | cloud service | en_US |
dc.subject | healthcare | en_US |
dc.subject | incubators | en_US |
dc.subject | machine learning | en_US |
dc.subject | mobile applications | en_US |
dc.subject | web application | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Clinical Alarms | en_US |
dc.subject | Cloud Computing | en_US |
dc.subject | Humans | en_US |
dc.subject | Humidity | en_US |
dc.subject | Incubators, Infant | en_US |
dc.subject | Infant, Newborn | en_US |
dc.subject | Internet of Things | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Mobile Applications | en_US |
dc.subject | Monitoring, Physiologic | en_US |
dc.subject | Neural Networks, Computer | en_US |
dc.subject | Temperature | en_US |
dc.subject | Wireless Technology | en_US |
dc.subject | alcohol | en_US |
dc.subject | butane | en_US |
dc.subject | methane | en_US |
dc.subject | propane | en_US |
dc.subject | air conditioning | en_US |
dc.subject | alarm monitoring | en_US |
dc.subject | ambient air | en_US |
dc.subject | Article | en_US |
dc.subject | cloud computing | en_US |
dc.subject | data integration | en_US |
dc.subject | gas | en_US |
dc.subject | heating | en_US |
dc.subject | human | en_US |
dc.subject | humidity | en_US |
dc.subject | Internet | en_US |
dc.subject | internet of things | en_US |
dc.subject | machine learning | en_US |
dc.subject | measurement | en_US |
dc.subject | newborn monitoring | en_US |
dc.subject | outlier detection | en_US |
dc.subject | software | en_US |
dc.subject | temperature | en_US |
dc.subject | temperature measurement | en_US |
dc.subject | weather | en_US |
dc.subject | alarm monitor | en_US |
dc.subject | algorithm | en_US |
dc.subject | artificial neural network | en_US |
dc.subject | devices | en_US |
dc.subject | internet of things | en_US |
dc.subject | mobile application | en_US |
dc.subject | neonatal incubator | en_US |
dc.subject | newborn | en_US |
dc.subject | physiologic monitoring | en_US |
dc.subject | procedures | en_US |
dc.subject | wireless communication | en_US |
dc.title | Iot-Based Incubator Monitoring and Machine Learning Powered Alarm Predictions | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3233/THC-240167 | - |
dc.identifier.pmid | 38517825 | - |
dc.identifier.scopus | 2-s2.0-85198678526 | - |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorscopusid | 59227101900 | - |
dc.authorscopusid | 6506871373 | - |
dc.identifier.volume | 32 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 2837 | en_US |
dc.identifier.endpage | 2846 | en_US |
dc.identifier.wos | WOS:001283885400058 | - |
dc.institutionauthor | … | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q4 | - |
dc.identifier.wosquality | Q4 | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
Appears in Collections: | PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
1
checked on Apr 2, 2025
Page view(s)
86
checked on Mar 31, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.