Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5528
Title: Brain clocks capture diversity and disparities in aging and dementia across geographically diverse populations
Authors: Moguilner, Sebastian
Baez, Sandra
Hernandez, Hernan
Migeot, Joaquin
Legaz, Agustina
Gonzalez-Gomez, Raul
Farina, Francesca R.
Keywords: Alzheimers-Disease
Sex-Differences
Connectivity
Criteria
Publisher: NATURE PORTFOLIO
Abstract: Brain clocks, which quantify discrepancies between brain age and chronological age, hold promise for understanding brain health and disease. However, the impact of diversity (including geographical, socioeconomic, sociodemographic, sex and neurodegeneration) on the brain-age gap is unknown. We analyzed datasets from 5,306 participants across 15 countries (7 Latin American and Caribbean countries (LAC) and 8 non-LAC countries). Based on higher-order interactions, we developed a brain-age gap deep learning architecture for functional magnetic resonance imaging (2,953) and electroencephalography (2,353). The datasets comprised healthy controls and individuals with mild cognitive impairment, Alzheimer disease and behavioral variant frontotemporal dementia. LAC models evidenced older brain ages (functional magnetic resonance imaging: mean directional error = 5.60, root mean square error (r.m.s.e.) = 11.91; electroencephalography: mean directional error = 5.34, r.m.s.e. = 9.82) associated with frontoposterior networks compared with non-LAC models. Structural socioeconomic inequality, pollution and health disparities were influential predictors of increased brain-age gaps, especially in LAC (R-2 = 0.37, F-2 = 0.59, r.m.s.e. = 6.9). An ascending brain-age gap from healthy controls to mild cognitive impairment to Alzheimer disease was found. In LAC, we observed larger brain-age gaps in females in control and Alzheimer disease groups compared with the respective males. The results were not explained by variations in signal quality, demographics or acquisition methods. These findings provide a quantitative framework capturing the diversity of accelerated brain aging. Analyses of neuroimaging datasets from 5,306 participants across 15 countries found generally larger brain-age gaps in Latin American compared with non-Latin American populations, which were influenced by disparities in socioeconomic and health-related factors.
URI: https://doi.org/10.1038/s41591-024-03209-x
https://hdl.handle.net/20.500.14365/5528
ISSN: 1078-8956
1546-170X
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 6, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 6, 2024

Page view(s)

56
checked on Nov 11, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.