Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/6050
Full metadata record
DC FieldValueLanguage
dc.contributor.authorD'hondt, Robbe-
dc.contributor.authorDedja, Klest-
dc.contributor.authorAerts, Sofie-
dc.contributor.authorVan Wijmeersch, Bart-
dc.contributor.authorKalincik, Tomas-
dc.contributor.authorReddel, Stephen-
dc.contributor.authorMSBase Study Grp, MSBase Study-
dc.date.accessioned2025-04-25T19:49:43Z-
dc.date.available2025-04-25T19:49:43Z-
dc.date.issued2025-
dc.identifier.issn0169-2607-
dc.identifier.issn1872-7565-
dc.identifier.urihttps://doi.org/10.1016/j.cmpb.2025.108624-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/6050-
dc.descriptionRoos, Izanne/0000-0003-0371-3666; Van Wijmeersch, Bart/0000-0003-0528-1545; Kalincik, Tomas/0000-0003-3778-1376; Kermode, Allan/0000-0002-4476-4016; D'Hondt, Robbe/0000-0001-7843-2178; Reddel, Stephen/0000-0002-0169-3350; Mrabet, Saloua/0000-0003-2718-1828; Lugaresi, Alessandra/0000-0003-2902-5589en_US
dc.description.abstractBackground: Prognostic machine learning research in multiple sclerosis has been mainly focusing on black-box models predicting whether a patients' disability will progress in a fixed number of years. However, as this is a binary yes/no question, it cannot take individual disease severity into account. Therefore, in this work we propose to model the time to disease progression instead. Additionally, we use explainable machine learning techniques to make the model outputs more interpretable. Methods: A preprocessed subset of 29,201 patients of the international data registry MSBase was used. Disability was assessed in terms of the Expanded Disability Status Scale (EDSS). We predict the time to significant and confirmed disability progression using random survival forests, a machine learning model for survival analysis. Performance is evaluated on a time-dependent area under the receiver operating characteristic and the precision-recall curves. Importantly, predictions are then explained using SHAP and Bellatrex, two explainability toolboxes, and lead to both global (population-wide) as well as local (patient visit-specific) insights. Results: On the task of predicting progression in 2 years, the random survival forest achieves state-of-the-art performance, comparable to previous work employing a random forest. However, here the random survival forest has the added advantage of being able to predict progression over a longer time horizon, with AUROC > 60% for the first 10 years after baseline. Explainability techniques further validated the model by extracting clinically valid insights from the predictions made by the model. For example, a clear decline in the per-visit probability of progression is observed in more recent years since 2012, likely reflecting globally increasing use of more effective MS therapies. Conclusion: The binary classification models found in the literature can be extended to a time-to-event setting without loss of performance, thus allowing a more comprehensive prediction of patient prognosis. Furthermore, explainability techniques proved to be key to reach a better understanding of the model and increase validation of its behaviour.en_US
dc.description.sponsorshipResearch Foundation Flan-ders, Belgium [1S38023N]; Flemish government AI Research Program (FAIR) , Belgiumen_US
dc.description.sponsorshipFunding: This work was supported by Research Foundation Flan-ders, Belgium [grant number 1S38023N] and the Flemish government AI Research Program (FAIR) , Belgium.en_US
dc.language.isoenen_US
dc.publisherElsevier Ireland Ltden_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectExplainable Artificial Intelligenceen_US
dc.subjectSurvival Analysisen_US
dc.subjectMultiple Sclerosisen_US
dc.subjectDisability Progressionen_US
dc.subjectLongitudinal Dataen_US
dc.titleExplainable Time-To Predictions in Multiple Sclerosisen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.cmpb.2025.108624-
dc.identifier.pmid39965473-
dc.identifier.scopus2-s2.0-85217750289-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridRoos, Izanne/0000-0003-0371-3666-
dc.authoridVan Wijmeersch, Bart/0000-0003-0528-1545-
dc.authoridKalincik, Tomas/0000-0003-3778-1376-
dc.authoridKermode, Allan/0000-0002-4476-4016-
dc.authoridD'Hondt, Robbe/0000-0001-7843-2178-
dc.authoridReddel, Stephen/0000-0002-0169-3350-
dc.authoridLugaresi, Alessandra/0000-0003-2902-5589-
dc.authorwosidPatti, Francesco/C-3300-2011-
dc.authorwosidRamanathan, Sudarshini/D-4303-2013-
dc.authorwosidSá, Maria/Aad-4527-2021-
dc.authorwosidCsepany, Tunde/M-1080-2019-
dc.authorwosidTomassini, Valentina/Hge-0655-2022-
dc.authorwosidLaureys, Guy/Aah-6369-2019-
dc.authorwosidLugaresi, Alessandra/C-7743-2012-
dc.authorscopusid58455057100-
dc.authorscopusid57486048000-
dc.authorscopusid58249888700-
dc.authorscopusid16314591800-
dc.authorscopusid8365701900-
dc.authorscopusid6603492432-
dc.authorscopusid36028311100-
dc.identifier.volume263en_US
dc.identifier.wosWOS:001434985500001-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
dc.description.woscitationindexScience Citation Index Expanded-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.languageiso639-1en-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.