Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/6511
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKilickaya, Sertac-
dc.contributor.authorEren, Levent-
dc.date.accessioned2025-11-03T17:00:39Z-
dc.date.available2025-11-03T17:00:39Z-
dc.date.issued2025-
dc.identifier.issn2523-3920-
dc.identifier.issn2523-3939-
dc.identifier.urihttps://doi.org/10.1007/s42417-025-02129-5-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/6511-
dc.description.abstractPurposeThe primary aim of this study is to enhance fault diagnosis in induction machines by leveraging the Pad & eacute; Approximant Neuron (PAON) model. While accelerometers and microphones are standard in motor condition monitoring, deep learning models with nonlinear neuron architectures offer promising improvements in diagnostic performance. This research investigates whether Pad & eacute; Approximant Neural Networks (Pad & eacute;Nets) can outperform conventional Convolutional Neural Networks (CNNs) and Self-Organized Operational Neural Networks (Self-ONNs) in the diagnosis of electrical and mechanical faults from vibration and acoustic data.MethodsWe evaluate and compare the diagnostic capabilities of three deep learning architectures: one-dimensional CNNs, Self-ONNs, and Pad & eacute;Nets. These models are tested on the University of Ottawa's publicly available constant-speed induction motor datasets, which include both vibration and acoustic sensor data. The Pad & eacute;Net model is designed to introduce enhanced nonlinearity and is compatible with unbounded activation functions such as LeakyReLU.Results and ConclusionPad & eacute;Nets consistently outperformed the baseline models, achieving diagnostic accuracies of 99.96%, 98.26%, 97.61%, and 98.33% for accelerometers 1, 2, 3, and the acoustic sensor, respectively. The enhanced nonlinearity of Pad & eacute;Nets, together with their compatibility with unbounded activation functions, significantly improves fault diagnosis performance in induction motor condition monitoring.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [2211-E]en_US
dc.description.sponsorshipThe Scientific and Technological Research Council of Turkey (TUBITAK) supports the work of Sertac Kilickaya through the 2211-E National PhD Scholarship Program.en_US
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofJournal of Vibration Engineering & Technologiesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCondition Monitoringen_US
dc.subjectFault Diagnosisen_US
dc.subjectPad É Approximant Neural Networksen_US
dc.subjectSelf-Organized Operational Neural Networksen_US
dc.subjectConvolutional Neural Networksen_US
dc.titlePadé Approximant Neural Networks for Enhanced Electric Motor Fault Diagnosis Using Vibration and Acoustic Dataen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s42417-025-02129-5-
dc.identifier.scopus2-s2.0-105017586869-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorwosidKilickaya, Sertac/Aav-4687-2020-
dc.authorscopusid57215414702-
dc.authorscopusid6603027663-
dc.identifier.volume13en_US
dc.identifier.issue7en_US
dc.identifier.wosWOS:001585657100001-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ2-
dc.description.woscitationindexScience Citation Index Expanded-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.grantfulltextopen-
item.languageiso639-1en-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
6511.pdf4.66 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

18
checked on Nov 24, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.