Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/780
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKayaalp, Necla-
dc.contributor.authorArslan, Guvenc-
dc.date.accessioned2023-06-16T12:47:33Z-
dc.date.available2023-06-16T12:47:33Z-
dc.date.issued2014-
dc.identifier.issn0884-8173-
dc.identifier.issn1098-111X-
dc.identifier.urihttps://doi.org/10.1002/int.21659-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/780-
dc.description.abstractRecent developments show that naive Bayesian classifier (NBC) performs significantly better in applications, although it is based on the assumption that all attributes are independent of each other. However, in the NBC each variable has a finite number of values, which means that in large data sets NBC may not be so effective in classifications. For example, variables may take continuous values. To overcome this issue, many researchers used fuzzy naive Bayesian classification for partitioning the continuous values. On the other hand, the choice of the distance function is an important subject that should be taken into consideration in fuzzy partitioning or clustering. In this study, a new fuzzy Bayes classifier is proposed for numerical attributes without the independency assumption. To get high accuracy in classification, membership functions are constructed by using the fuzzy C-means clustering (FCM). The main objective of using FCM is to obtain membership functions directly from the data set instead of consulting to an expert. The proposed method is demonstrated on the basis of two well-known data sets from the literature, which consist of numerical attributes only. The results show that the proposed the fuzzy Bayes classification is at least comparable to other methods.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofInternatıonal Journal of Intellıgent Systemsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleA Fuzzy Bayesian Classifier with Learned Mahalanobis Distanceen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/int.21659-
dc.identifier.scopus2-s2.0-84902805683en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridKoçhan, Necla/0000-0003-2355-4826-
dc.authoridArslan, Guvenc/0000-0002-4770-2689-
dc.authorwosidKoçhan, Necla/AAA-4147-2021-
dc.authorwosidKochan, Necla/AAA-4191-2021-
dc.authorwosidArslan, Guvenc/AAE-7061-2019-
dc.authorscopusid56218351000-
dc.authorscopusid35193585400-
dc.identifier.volume29en_US
dc.identifier.issue8en_US
dc.identifier.startpage713en_US
dc.identifier.endpage726en_US
dc.identifier.wosWOS:000337632700001en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Mathematics-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
780.pdf698.62 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

5
checked on Nov 20, 2024

Page view(s)

84
checked on Nov 18, 2024

Download(s)

26
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.