Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/875
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKiranyaz, Serkan-
dc.contributor.authorİnce, Türker-
dc.contributor.authorIosifidis, Alexandros-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T12:47:48Z-
dc.date.available2023-06-16T12:47:48Z-
dc.date.issued2020-
dc.identifier.issn0941-0643-
dc.identifier.issn1433-3058-
dc.identifier.urihttps://doi.org/10.1007/s00521-020-04780-3-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/875-
dc.description.abstractFeed-forward, fully connected artificial neural networks or the so-called multi-layer perceptrons are well-known universal approximators. However, their learning performance varies significantly depending on the function or the solution space that they attempt to approximate. This is mainly because of their homogenous configuration based solely on the linear neuron model. Therefore, while they learn very well those problems with a monotonous, relatively simple and linearly separable solution space, they may entirely fail to do so when the solution space is highly nonlinear and complex. Sharing the same linear neuron model with two additional constraints (local connections and weight sharing), this is also true for the conventional convolutional neural networks (CNNs) and it is, therefore, not surprising that in many challenging problems only the deep CNNs with a massive complexity and depth can achieve the required diversity and the learning performance. In order to address this drawback and also to accomplish a more generalized model over the convolutional neurons, this study proposes a novel network model, called operational neural networks (ONNs), which can be heterogeneous and encapsulate neurons with any set of operators to boost diversity and to learn highly complex and multi-modal functions or spaces with minimal network complexity and training data. Finally, the training method to back-propagate the error through the operational layers of ONNs is formulated. Experimental results over highly challenging problems demonstrate the superior learning capabilities of ONNs even with few neurons and hidden layers.en_US
dc.description.sponsorshipQatar National Libraryen_US
dc.description.sponsorshipOpen Access funding provided by the Qatar National Library.en_US
dc.language.isoenen_US
dc.publisherSpringer London Ltden_US
dc.relation.ispartofNeural Computıng & Applıcatıonsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectOperational neural networken_US
dc.subjectHeterogeneous and nonlinear neural networksen_US
dc.subjectConvolutional neural networksen_US
dc.subjectNeuronal Diversityen_US
dc.titleOperational neural networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00521-020-04780-3-
dc.identifier.scopus2-s2.0-85081633955en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridGabbouj, Moncef/0000-0002-9788-2323-
dc.authoridkiranyaz, serkan/0000-0003-1551-3397-
dc.authoridIosifidis, Alexandros/0000-0003-4807-1345-
dc.authorwosidGabbouj, Moncef/G-4293-2014-
dc.authorwosidKiranyaz, Serkan/AAK-1416-2021-
dc.authorwosidIosifidis, Alexandros/G-2433-2013-
dc.authorscopusid7801632948-
dc.authorscopusid56259806600-
dc.authorscopusid36720841400-
dc.authorscopusid7005332419-
dc.identifier.volume32en_US
dc.identifier.issue11en_US
dc.identifier.startpage6645en_US
dc.identifier.endpage6668en_US
dc.identifier.wosWOS:000536371900022en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
875.pdf4.34 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

64
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

52
checked on Nov 20, 2024

Page view(s)

226
checked on Nov 18, 2024

Download(s)

16
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.