Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/876
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKiranyaz, Serkan-
dc.contributor.authorMalik, Junaid-
dc.contributor.authorAbdallah, Habib Ben-
dc.contributor.authorİnce, Türker-
dc.contributor.authorIosifidis, Alexandros-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T12:47:48Z-
dc.date.available2023-06-16T12:47:48Z-
dc.date.issued2021-
dc.identifier.issn0941-0643-
dc.identifier.issn1433-3058-
dc.identifier.urihttps://doi.org/10.1007/s00521-020-05543-w-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/876-
dc.description.abstractThe recently proposed network model, Operational Neural Networks (ONNs), can generalize the conventional Convolutional Neural Networks (CNNs) that are homogenous only with a linear neuron model. As a heterogenous network model, ONNs are based on a generalized neuron model that can encapsulate any set of non-linear operators to boost diversity and to learn highly complex and multi-modal functions or spaces with minimal network complexity and training data. However, the default search method to find optimal operators in ONNs, the so-called Greedy Iterative Search (GIS) method, usually takes several training sessions to find a single operator set per layer. This is not only computationally demanding, also the network heterogeneity is limited since the same set of operators will then be used for all neurons in each layer. To address this deficiency and exploit a superior level of heterogeneity, in this study the focus is drawn on searching the best-possible operator set(s) for the hidden neurons of the network based on the Synaptic Plasticity paradigm that poses the essential learning theory in biological neurons. During training, each operator set in the library can be evaluated by their synaptic plasticity level, ranked from the worst to the best, and an elite ONN can then be configured using the top-ranked operator sets found at each hidden layer. Experimental results over highly challenging problems demonstrate that the elite ONNs even with few neurons and layers can achieve a superior learning performance than GIS-based ONNs and as a result, the performance gap over the CNNs further widens.en_US
dc.language.isoenen_US
dc.publisherSpringer London Ltden_US
dc.relation.ispartofNeural Computıng & Applıcatıonsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectOperational neural networksen_US
dc.subjectConvolutional neural networksen_US
dc.subjectSynaptic Plasticityen_US
dc.subjectRepresentationsen_US
dc.titleExploiting heterogeneity in operational neural networks by synaptic plasticityen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00521-020-05543-w-
dc.identifier.scopus2-s2.0-85098700454en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridGabbouj, Moncef/0000-0002-9788-2323-
dc.authoridMalik, Hafiz Muhammad Junaid/0000-0002-2750-4028-
dc.authoridIosifidis, Alexandros/0000-0003-4807-1345-
dc.authoridkiranyaz, serkan/0000-0003-1551-3397-
dc.authorwosidKiranyaz, Serkan/AAK-1416-2021-
dc.authorwosidGabbouj, Moncef/G-4293-2014-
dc.authorwosidIosifidis, Alexandros/G-2433-2013-
dc.authorscopusid7801632948-
dc.authorscopusid57201589931-
dc.authorscopusid57219741097-
dc.authorscopusid56259806600-
dc.authorscopusid36720841400-
dc.authorscopusid7005332419-
dc.identifier.volume33en_US
dc.identifier.issue13en_US
dc.identifier.startpage7997en_US
dc.identifier.endpage8015en_US
dc.identifier.wosWOS:000604573200004en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
876.pdf3.96 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

13
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

13
checked on Nov 20, 2024

Page view(s)

256
checked on Nov 18, 2024

Download(s)

18
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.