Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/881
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTokatli, Figen-
dc.contributor.authorTari, Canan-
dc.contributor.authorÜnlütürk, Mehmet Süleyman-
dc.contributor.authorBaysal, Nihan Gogus-
dc.date.accessioned2023-06-16T12:47:49Z-
dc.date.available2023-06-16T12:47:49Z-
dc.date.issued2009-
dc.identifier.issn1367-5435-
dc.identifier.issn1476-5535-
dc.identifier.urihttps://doi.org/10.1007/s10295-009-0595-y-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/881-
dc.description.abstractAspergillus sojae, which is used in the making of koji, a characteristic Japanese food, is a potential candidate for the production of polygalacturonase (PG) enzyme, which of a major industrial significance. In this study, fermentation data of an A. sojae system were modeled by multiple linear regression (MLR) and artificial neural network (ANN) approaches to estimate PG activity and biomass. Nutrient concentrations, agitation speed, inoculum ratio and final pH of the fermentation medium were used as the inputs of the system. In addition to nutrient conditions, the final pH of the fermentation medium was also shown to be an effective parameter in the estimation of biomass concentration. The ANN parameters, such as number of hidden neurons, epochs and learning rate, were determined using a statistical approach. In the determination of network architecture, a cross-validation technique was used to test the ANN models. Goodness-of-fit of the regression and ANN models was measured by the R (2) of cross-validated data and squared error of prediction. The PG activity and biomass were modeled with a 5-2-1 and 5-9-1 network topology, respectively. The models predicted enzyme activity with an R (2) of 0.84 and biomass with an R (2) value of 0.83, whereas the regression models predicted enzyme activity with an R (2) of 0.84 and biomass with an R (2) of 0.69.en_US
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofJournal of Industrıal Mıcrobıology & Bıotechnologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial intelligenceen_US
dc.subjectCross-validationen_US
dc.subjectFilamentous fungien_US
dc.subjectPolygalacturonase productionen_US
dc.subjectSubmerged cultureen_US
dc.subjectArtificial Neural-Networksen_US
dc.subjectCapillary-Zone-Electrophoresisen_US
dc.subjectResponse-Surfaceen_US
dc.subjectOptimizationen_US
dc.subjectClassificationen_US
dc.subjectPredictionen_US
dc.subjectParametersen_US
dc.subjectDesignen_US
dc.subjectGrowthen_US
dc.subjectNigeren_US
dc.titleModeling of polygalacturonase enzyme activity and biomass production by Aspergillus sojae ATCC 20235en_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10295-009-0595-y-
dc.identifier.pmid19479289en_US
dc.identifier.scopus2-s2.0-69249220246en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridTokatli, F./0000-0003-2643-5523-
dc.authoridunluturk, sevcan/0000-0002-0501-4714-
dc.authorwosidTokatli, F./B-6746-2012-
dc.authorscopusid23101457000-
dc.authorscopusid12239953100-
dc.authorscopusid15063695700-
dc.authorscopusid26635338700-
dc.identifier.volume36en_US
dc.identifier.issue9en_US
dc.identifier.startpage1139en_US
dc.identifier.endpage1148en_US
dc.identifier.wosWOS:000269193600002en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ2-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
crisitem.author.dept05.04. Software Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
881.pdf387.58 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

9
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

8
checked on Nov 20, 2024

Page view(s)

68
checked on Nov 25, 2024

Download(s)

18
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.