Browsing by Author "Kiranyaz, S."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - Scopus: 21Automated Patient-Specific Classification of Premature Ventricular Contractions(2008) Ince, T.; Kiranyaz, S.; Gabbouj, M.In this paper, we present an automated patient-specific electrocardiogram (ECG) beat classifier designed for accurate detection of premature ventricular contractions (PVCs). In the proposed feature extraction scheme, the principal component analysis (PCA) is applied to the dyadic wavelet transform (DWT) of the ECG signal to extract morphological ECG features, which are then combined with the temporal features to form a resultant efficient feature vector. For the classification scheme, we selected the feed-forward artificial neural networks (ANNs) optimally designed by the multi-dimensional particle swarm optimization (MD-PSO) technique, which evolves the structure and weights of the network specifically for each patient. Training data for the ANN classifier include both global (total of 150 representative beats randomly sampled from each class in selected training files) and local (the first 5 min of a patient's ECG recording) training patterns. Simulation results using 40 files in the MIT/BIH arrhythmia database achieved high average accuracy of 97% for differentiating normal, PVC, and other beats.Conference Object Citation - Scopus: 3Learned Vs. Hand-Designed Features for Ecg Beat Classification: a Comprehensive Study(Springer-Verlag Singapore Pte Ltd, 2018) İnce, Türker; Zabihi, M.; Kiranyaz, S.; Gabbouj, MoncefIn this study, in order to find out the best ECG classification performance we realized comparative evaluations among the state-of-the-art classifiers such as Convolutional Neural Networks (CNNs), multi-layer perceptrons (MLPs) and Support Vector Machines (SVMs). Furthermore, we compared the performance of the learned features from the last convolutional layer of trained 1-D CNN classifier against the handcrafted features that are extracted by Principal Component Analysis, Hermite Transform and Dyadic Wavelet Transform. Experimental results over the MIT-BIH arrhythmia benchmark database demonstrate that the single channel (raw ECG data based) shallow 1D CNN classifier over the learned features in general achieves the highest classification accuracy and computational efficiency. Finally, it is observed that the use of the learned features on either SVM or MLP classifiers does not yield any performance improvement.

