Karapinar, Erdal

Loading...
Profile Picture
Name Variants
Karapńar, Erdal
KARAPINAR, ERDAL
Karapinar, Erdal
Job Title
Email Address
erdal.karapinar@ieu.edu.tr
Main Affiliation
02.02. Mathematics
Status
Former Staff
Website
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Sustainable Development Goals

SDG data is not available
Documents

535

Citations

15316

h-index

63

Documents

505

Citations

13046

Scholarly Output

2

Articles

2

Views / Downloads

0/0

Supervised MSc Theses

0

Supervised PhD Theses

0

WoS Citation Count

3

Scopus Citation Count

6

WoS h-index

1

Scopus h-index

1

Patents

0

Projects

0

WoS Citations per Publication

1.50

Scopus Citations per Publication

3.00

Open Access Source

1

Supervised Theses

0

Google Analytics Visitor Traffic

JournalCount
Journal of Mathematıcal Analysıs And Applıcatıons1
Turkish Journal of Mathematics1
Current Page: 1 / 1

Scopus Quartile Distribution

Competency Cloud

GCRIS Competency Cloud

Scholarly Output Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 2
    Citation - Scopus: 6
    Multirectangular Characteristic Invariants for Power L-Kothe Spaces of First Type
    (Academic Press Inc Elsevier Science, 2007) Karapinar, Erdal
    Let l be a Banach sequence space with a monotone norm \\ center dot \\(l), in which the canonical system (e(i)) is a normalized unconditional basis. We consider the problem of quasi-diagonal isomorphism of first type power l-Kothe spaces E-l (lambda, a) (see (1) below). From [P.A. Chalov, V.P. Zahariuta, On quasi-diagonal isomorphism of generalized power spaces, in: Linear Topological Spaces and Complex Analysis, vol. 2, METU - TUBITAK, Ankara, 1995, pp. 35-44; P.A. Chalov, T. Terzioglu, V.P. Zahariuta, First type power Kothe spaces and m-rectangular invariants, in: Linear Topological Spaces and Complex Analysis, vol. 3, METU - TUBITAK, Ankara, 1997, pp. 30-44; P.A. Chalov, T. Terzioglu, V.P. Zahariuta, Multirectangular invariants for power Kothe spaces, J. Math. Anal. Appl. 297 (2004) 673-695] it is known that the system of all m-rectangle characteristics mu(m) (see (9) below) is a complete quasi-diagonal invariant on the class of all first type power Kothe spaces [V.P. Zahariuta, On isomorphisms and quasi-equivalence of bases of power Kothe spaces, Soviet Math. Dokl. 16 (1975) 411-414; V.P. Zahariuta, Linear topologic invariants and their applications to isomorphic classification of generalized power spaces, Turkish J. Math. 20 (1996) 237-289], if the relation of equivalency of systems (mu(X)(m)) and (mu((X) over tilde)(m)) is defined by some natural estimates with constants independent of m. Deriving the characteristic (beta) over tilde from the characteristic beta (see [V.P. Zahariuta, Linear topological invariants and isomorphisms of spaces of analytic functions, in: Matem. Analiz i ego Pril., vol. 2, Rostov Univ., Rostov-on-Don, 1970, pp. 3-13 (in Russian), in: Matem. Analiz i ego Pril., vol. 3, Rostov Univ., Rostov-on-Don, 1971, pp. 176-180 (in Russian); V.P. Zahariuta, Generalized Mityagin invariants and a continuum of mutually nonisomorphic spaces of analytic functions, Funktsional. Anal. i Prilozhen. 11 (1977) 24-30 (in Russian); V.P. Zahariuta, Compact operators and isomorphisms of Kothe spaces, in: Aktualnye Voprosy Matem. Analiza, vol. 46, Rostov Univ., Rostov-on-Don, 1978, pp. 62-71 (in Russian); P.A. Chalov, P.B. Djakov, V.P. Zahariuta, Compound invariants and embeddings of Cartesian products, Studia Math. 137 (1) (1999) 33-47; P.B. Djakov, M. Yurdakul, V.P. Zahariuta, Isomorphic classification of Cartesian products, Michigan Math. J. 43 (1996) 221-229; V.P. Zahariuta, Linear topologic invariants and their applications to isomorphic classification of generalized power spaces, Turkish J. Math. 20 (1996) 237-289], and using the S. Krein's interpolation method of analytic scale, we are able to generalize some results of [P.A. Chalov, V.P. Zahariuta, On quasi-diagonal isomorphism of generalized power spaces, in: Linear Topological Spaces and Complex Analysis, vol. 2, METU - TUBITAK, Ankara, 1995, pp. 35-44; P.A. Chalov, T. Terzioglu, V.P. Zahariuta, First type power Kothe spaces and m-rectangular invariants, in: Linear Topological Spaces and Complex Analysis, vol. 3, METU - TUBITAK, Ankara, 1997, pp. 30-44; P.A. Chalov, T. Terzioglu, V.P. Zahariuta, Multirectangular invariants for power Kothe spaces, J. Math. Anal. Appl. 297 (2004) 673-695]. (C) 2007 Elsevier Inc. All rights reserved.
  • Article
    Citation - WoS: 1
    On Nuclearity of Köthe Spaces
    (2007) Karapinar E.; Zakharyuta V.
    In this study we observe that the Köthe space Klp (A) is nuclear if it is isomorphic to a complemented subspace of Klq (B) for 1 ? p < q < ? and p < 2. © TÜBİTAK.