An Optimal Control Problem for Rigid Body Motions on Lie Group So(2, 1) [pp. 1054-1059]
| dc.contributor.author | Abazari N. | |
| dc.contributor.author | Sager I. | |
| dc.date.accessioned | 2023-06-16T15:06:27Z | |
| dc.date.available | 2023-06-16T15:06:27Z | |
| dc.date.issued | 2010 | |
| dc.description.abstract | In this paper smooth trajectories are computed in the Lie group SO(2, 1) as a motion planning problem by assigning a Frenet frame to the rigid body system to optimize the cost function of the elastic energy which is spent to track a timelike curve in Minkowski space. A method is proposed to solve a motion planning problem that minimize the integral of the square norm of Darboux vector of a timelike curve. This method uses the coordinate free Maximum Principle of Optimal control and results in the theory of integrable Hamiltonian systems. The presence of several conversed quantities inherent in these Hamiltonian systems aids in the explicit computation of the rigid body motions. | en_US |
| dc.identifier.issn | 2010-376X | |
| dc.identifier.scopus | 2-s2.0-84871273487 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14365/3939 | |
| dc.language.iso | en | en_US |
| dc.relation.ispartof | World Academy of Science, Engineering and Technology | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Darboux vector | en_US |
| dc.subject | Hamiltonian vector field | en_US |
| dc.subject | Lie group | en_US |
| dc.subject | Lorentz metric | en_US |
| dc.subject | Maximum principle | en_US |
| dc.subject | Optimal control | en_US |
| dc.subject | Rigid body motion | en_US |
| dc.subject | Elastic energy | en_US |
| dc.subject | Frenet frame | en_US |
| dc.subject | Hamiltonian systems | en_US |
| dc.subject | Hamiltonian vector fields | en_US |
| dc.subject | Integrable Hamiltonian system | en_US |
| dc.subject | Lorentz | en_US |
| dc.subject | Minkowski space | en_US |
| dc.subject | Motion planning problems | en_US |
| dc.subject | Optimal control problem | en_US |
| dc.subject | Optimal controls | en_US |
| dc.subject | Rigid body systems | en_US |
| dc.subject | Rigid-body motion | en_US |
| dc.subject | Smooth trajectories | en_US |
| dc.subject | Control | en_US |
| dc.subject | Curve fitting | en_US |
| dc.subject | Lie groups | en_US |
| dc.subject | Maximum principle | en_US |
| dc.subject | Motion planning | en_US |
| dc.subject | Optimal control systems | en_US |
| dc.subject | Rigid structures | en_US |
| dc.subject | Hamiltonians | en_US |
| dc.title | An Optimal Control Problem for Rigid Body Motions on Lie Group So(2, 1) [pp. 1054-1059] | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 36805441400 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.departmenttemp | Abazari, N., Department of Mathematics, Islamic Azad university, Ardabil Branch, Ardabil, Iran; Sager, I., Department of Mathematics, Izmir University of Economics, Izmir, Turkey | en_US |
| gdc.description.endpage | 1059 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 1054 | en_US |
| gdc.description.volume | 42 | en_US |
| gdc.description.wosquality | N/A | |
| gdc.index.type | Scopus | |
| gdc.scopus.citedcount | 0 | |
| relation.isOrgUnitOfPublication | e9e77e3e-bc94-40a7-9b24-b807b2cd0319 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | e9e77e3e-bc94-40a7-9b24-b807b2cd0319 |
Files
Original bundle
1 - 1 of 1
