An Optimal Control Problem for Rigid Body Motions on Lie Group So(2, 1) [pp. 1054-1059]

dc.contributor.author Abazari N.
dc.contributor.author Sager I.
dc.date.accessioned 2023-06-16T15:06:27Z
dc.date.available 2023-06-16T15:06:27Z
dc.date.issued 2010
dc.description.abstract In this paper smooth trajectories are computed in the Lie group SO(2, 1) as a motion planning problem by assigning a Frenet frame to the rigid body system to optimize the cost function of the elastic energy which is spent to track a timelike curve in Minkowski space. A method is proposed to solve a motion planning problem that minimize the integral of the square norm of Darboux vector of a timelike curve. This method uses the coordinate free Maximum Principle of Optimal control and results in the theory of integrable Hamiltonian systems. The presence of several conversed quantities inherent in these Hamiltonian systems aids in the explicit computation of the rigid body motions. en_US
dc.identifier.issn 2010-376X
dc.identifier.scopus 2-s2.0-84871273487
dc.identifier.uri https://hdl.handle.net/20.500.14365/3939
dc.language.iso en en_US
dc.relation.ispartof World Academy of Science, Engineering and Technology en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Darboux vector en_US
dc.subject Hamiltonian vector field en_US
dc.subject Lie group en_US
dc.subject Lorentz metric en_US
dc.subject Maximum principle en_US
dc.subject Optimal control en_US
dc.subject Rigid body motion en_US
dc.subject Elastic energy en_US
dc.subject Frenet frame en_US
dc.subject Hamiltonian systems en_US
dc.subject Hamiltonian vector fields en_US
dc.subject Integrable Hamiltonian system en_US
dc.subject Lorentz en_US
dc.subject Minkowski space en_US
dc.subject Motion planning problems en_US
dc.subject Optimal control problem en_US
dc.subject Optimal controls en_US
dc.subject Rigid body systems en_US
dc.subject Rigid-body motion en_US
dc.subject Smooth trajectories en_US
dc.subject Control en_US
dc.subject Curve fitting en_US
dc.subject Lie groups en_US
dc.subject Maximum principle en_US
dc.subject Motion planning en_US
dc.subject Optimal control systems en_US
dc.subject Rigid structures en_US
dc.subject Hamiltonians en_US
dc.title An Optimal Control Problem for Rigid Body Motions on Lie Group So(2, 1) [pp. 1054-1059] en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 36805441400
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.departmenttemp Abazari, N., Department of Mathematics, Islamic Azad university, Ardabil Branch, Ardabil, Iran; Sager, I., Department of Mathematics, Izmir University of Economics, Izmir, Turkey en_US
gdc.description.endpage 1059 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1054 en_US
gdc.description.volume 42 en_US
gdc.description.wosquality N/A
gdc.index.type Scopus
gdc.scopus.citedcount 0
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication.latestForDiscovery e9e77e3e-bc94-40a7-9b24-b807b2cd0319

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2968.pdf
Size:
136.57 KB
Format:
Adobe Portable Document Format