The Role of Earnings Components and Machine Learning on the Revelation of Deteriorating Firm Performance

dc.contributor.author Oz, Ibrahim Onur
dc.contributor.author Yelkenci, Tezer
dc.contributor.author Meral, Gorkem
dc.date.accessioned 2023-06-16T14:11:06Z
dc.date.available 2023-06-16T14:11:06Z
dc.date.issued 2021
dc.description.abstract This study explores the proficiency of earnings components for detecting earnings and cash flows distress. The authors examine the deterioration of these two performance indicators for two aggregate and two disaggregate earnings models, each of which is subject to examination through different machine learning, non-parametric, and parametric methods. The results, obtained from firms in 22 countries, reveal that the current information content of earnings not only has explanatory power for future earnings and cash flows but also can support advance classifications of the two performance indicators as negative or positive. Each aggregate and disaggregate model offers distress classification ability, the disaggregation of earnings generates better, robust detection accuracies for cash flow distress, while aggregate earnings model provides improved classification for prospective earnings distress. The findings also suggest that machine learning estimation methods provide superior distress detection compared to a parametric method, despite its still decent performance. en_US
dc.identifier.doi 10.1016/j.irfa.2021.101797
dc.identifier.issn 1057-5219
dc.identifier.issn 1873-8079
dc.identifier.scopus 2-s2.0-85107158025
dc.identifier.uri https://doi.org/10.1016/j.irfa.2021.101797
dc.identifier.uri https://hdl.handle.net/20.500.14365/1269
dc.language.iso en en_US
dc.publisher Elsevier Science Inc en_US
dc.relation.ispartof Internatıonal Revıew of Fınancıal Analysıs en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Cash flows en_US
dc.subject Earnings en_US
dc.subject Distress prediction en_US
dc.subject Machine learning en_US
dc.subject Estimation methods en_US
dc.subject Working Capital Management en_US
dc.subject Financial Distress Prediction en_US
dc.subject Operating Cash Flow en_US
dc.subject Bankruptcy Prediction en_US
dc.subject Accruals en_US
dc.subject Classification en_US
dc.subject Profitability en_US
dc.subject Ability en_US
dc.subject Ratios en_US
dc.subject Models en_US
dc.title The Role of Earnings Components and Machine Learning on the Revelation of Deteriorating Firm Performance en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 56455145900
gdc.author.scopusid 56455368000
gdc.author.scopusid 57224172659
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department İzmir Ekonomi Üniversitesi en_US
gdc.description.departmenttemp [Oz, Ibrahim Onur] Univ Hartford, 200 Bloomfield Ave, Hartford, CT 06117 USA; [Yelkenci, Tezer] Izmir Univ Econ, Fevzi Cakmak Sakarya Caddesi 156, TR-35330 Izmir, Turkey; [Meral, Gorkem] Intuita, Waterhouse Sq,3,138-142 Holborn, London EC1N 2SW, England en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 101797
gdc.description.volume 77 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3167410303
gdc.identifier.wos WOS:000694972000002
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.5483943E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0502 economics and business
gdc.oaire.sciencefields 05 social sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.09
gdc.opencitations.count 0
gdc.plumx.mendeley 31
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.wos.citedcount 0
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication.latestForDiscovery e9e77e3e-bc94-40a7-9b24-b807b2cd0319

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
297.pdf
Size:
602.76 KB
Format:
Adobe Portable Document Format