Reinforcement Learning in Condition-Based Maintenance: A Survey

dc.contributor.author Erdem, Gamze
dc.contributor.author Dincer, M. Cemali
dc.contributor.author Fadiloglu, M. Murat
dc.date.accessioned 2025-09-25T19:00:42Z
dc.date.available 2025-09-25T19:00:42Z
dc.date.issued 2025
dc.description.abstract This literature review examines the convergence of Reinforcement Learning (RL) and Condition-Based Maintenance (CBM), emphasizing the transformative impact of RL methodologies on maintenance decision-making in complex industrial settings. By integrating insights from a diverse array of studies, the review critically assesses the use of various RL techniques such as Q-learning, deep reinforcement learning, and policy gradient approaches in forecasting equipment failures, optimizing maintenance schedules, and reducing operational downtime. It outlines the shift from conventional, rule-based maintenance practices to adaptive, data-driven strategies that exploit real-time sensor data and probabilistic modeling. Key challenges highlighted include computational complexity, the extensive training data requirements, and the integration of RL models into existing industrial frameworks. Furthermore, the review explores literature on CBM within multi-component systems, where prevalent approaches include numerical analyses, Markov Decision Processes (MDPs), and case studies, all of which demonstrate notable cost reductions and decreased downtime. Relevant studies were identified through searches on databases such as Google Scholar, Scopus, and Web of Science. Overall, this review provides a comprehensive analysis of the current state and prospects of employing reinforcement learning in conditionbased maintenance, offering valuable insights for both academic researchers and industry practitioners. en_US
dc.identifier.doi 10.1007/978-3-031-98565-2_69
dc.identifier.isbn 9783031985645
dc.identifier.isbn 9783031985652
dc.identifier.issn 2367-3370
dc.identifier.issn 2367-3389
dc.identifier.scopus 2-s2.0-105013082603
dc.identifier.uri https://doi.org/10.1007/978-3-031-98565-2_69
dc.identifier.uri https://hdl.handle.net/20.500.14365/6441
dc.language.iso en en_US
dc.publisher Springer International Publishing AG en_US
dc.relation.ispartof 2025 International Conference on Intelligent and Fuzzy Systems-INFUS-Annual -- Jul 29-31, 2025 -- Istanbul, Turkiye en_US
dc.relation.ispartofseries Lecture Notes in Networks and Systems
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Reinforcement Learning en_US
dc.subject Machine Learning en_US
dc.subject Condition-Based Maintenance en_US
dc.title Reinforcement Learning in Condition-Based Maintenance: A Survey en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Fadiloğlu, Murat
gdc.author.institutional Erdem, Gamze
gdc.author.wosid Oguz Erdem, Gamze/Kqu-1331-2024
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department İzmir Ekonomi Üniversitesi en_US
gdc.description.departmenttemp [Erdem, Gamze] Izmir Univ Econ, Sakarya Cad 156, TR-35330 Izmir, Turkiye; [Dincer, M. Cemali] Yasar Univ, Univ Caddesi 37-39, Izmir, Turkiye; [Fadiloglu, M. Murat] Sabanci Univ, TR-34956 Istanbul, Turkiye en_US
gdc.description.endpage 647 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 639 en_US
gdc.description.volume 1530 en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W4412718461
gdc.identifier.wos WOS:001587122800069
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.7494755E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.59
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Fadiloğlu, Murat
gdc.virtual.author Erdem, Gamze
gdc.wos.citedcount 0
relation.isAuthorOfPublication d2d28fb5-9f33-4f50-9fa4-cc867a9b1adc
relation.isAuthorOfPublication 31295d88-d679-42b2-8b9d-5bb24304381a
relation.isAuthorOfPublication.latestForDiscovery d2d28fb5-9f33-4f50-9fa4-cc867a9b1adc
relation.isOrgUnitOfPublication bdb88a44-c66f-45fd-b2ec-de89cb1c93a0
relation.isOrgUnitOfPublication 26a7372c-1a5e-42d9-90b6-a3f7d14cad44
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication.latestForDiscovery bdb88a44-c66f-45fd-b2ec-de89cb1c93a0

Files