A Fuzzy Bayesian Classifier With Learned Mahalanobis Distance

dc.contributor.author Kayaalp, Necla
dc.contributor.author Arslan, Guvenc
dc.date.accessioned 2023-06-16T12:47:33Z
dc.date.available 2023-06-16T12:47:33Z
dc.date.issued 2014
dc.description.abstract Recent developments show that naive Bayesian classifier (NBC) performs significantly better in applications, although it is based on the assumption that all attributes are independent of each other. However, in the NBC each variable has a finite number of values, which means that in large data sets NBC may not be so effective in classifications. For example, variables may take continuous values. To overcome this issue, many researchers used fuzzy naive Bayesian classification for partitioning the continuous values. On the other hand, the choice of the distance function is an important subject that should be taken into consideration in fuzzy partitioning or clustering. In this study, a new fuzzy Bayes classifier is proposed for numerical attributes without the independency assumption. To get high accuracy in classification, membership functions are constructed by using the fuzzy C-means clustering (FCM). The main objective of using FCM is to obtain membership functions directly from the data set instead of consulting to an expert. The proposed method is demonstrated on the basis of two well-known data sets from the literature, which consist of numerical attributes only. The results show that the proposed the fuzzy Bayes classification is at least comparable to other methods. en_US
dc.identifier.doi 10.1002/int.21659
dc.identifier.issn 0884-8173
dc.identifier.issn 1098-111X
dc.identifier.scopus 2-s2.0-84902805683
dc.identifier.uri https://doi.org/10.1002/int.21659
dc.identifier.uri https://hdl.handle.net/20.500.14365/780
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.ispartof Internatıonal Journal of Intellıgent Systems en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title A Fuzzy Bayesian Classifier With Learned Mahalanobis Distance en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Koçhan, Necla/0000-0003-2355-4826
gdc.author.id Arslan, Guvenc/0000-0002-4770-2689
gdc.author.scopusid 56218351000
gdc.author.scopusid 35193585400
gdc.author.wosid Koçhan, Necla/AAA-4147-2021
gdc.author.wosid Kochan, Necla/AAA-4191-2021
gdc.author.wosid Arslan, Guvenc/AAE-7061-2019
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department İzmir Ekonomi Üniversitesi en_US
gdc.description.departmenttemp [Kayaalp, Necla; Arslan, Guvenc] Izmir Univ Econ, Dept Math, TR-35330 Izmir, Turkey en_US
gdc.description.endpage 726 en_US
gdc.description.issue 8 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 713 en_US
gdc.description.volume 29 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W1919024784
gdc.identifier.wos WOS:000337632700001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.903127E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.268529E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.33390117
gdc.openalex.normalizedpercentile 0.61
gdc.opencitations.count 6
gdc.plumx.crossrefcites 5
gdc.plumx.mendeley 7
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.virtual.author Kochan, Necla
gdc.wos.citedcount 5
relation.isAuthorOfPublication 199229e3-af40-4a11-bafb-1e44e3fa33e6
relation.isAuthorOfPublication.latestForDiscovery 199229e3-af40-4a11-bafb-1e44e3fa33e6
relation.isOrgUnitOfPublication 9fb4f7d7-bc42-4427-abc8-046d10845333
relation.isOrgUnitOfPublication a42dba5b-3d5d-430e-8f4c-10d6dbc69123
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication.latestForDiscovery 9fb4f7d7-bc42-4427-abc8-046d10845333

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
780.pdf
Size:
698.62 KB
Format:
Adobe Portable Document Format