On Generators of the Hilbert Ideal for Cyclic Groups in Modular Invariant Theory
Loading...
Files
Date
2015
Authors
Erkuş, DENİZ ERDEMİRCİ
Journal Title
Journal ISSN
Volume Title
Publisher
Academic Press Inc Elsevier Science
Open Access Color
HYBRID
Green Open Access
Yes
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
Let G be a cyclic group of order p(2) and V be a faithful indecomposable representation of G over a field F of characteristic p. We show that the Hilbert ideal of the invariant ring is generated by polynomials of degree at most |G| whenever dim V <= 4p or dim V >= p(2) - 2p, proving a conjecture of Derksen and Kemper in this particular case. (C) 2014 Elsevier Inc. All rights reserved.
Description
ORCID
Keywords
Modular invariant theory, Polynomial invariants, Noether number, Hilbert ideal, Vector Invariants, Finite-Groups, Prime-Order, Representations, Fields, Rings, Hilbert ideal, Noether number, polynomial invariants, modular invariant theory, Actions of groups on commutative rings; invariant theory
Fields of Science
0101 mathematics, 01 natural sciences
Citation
WoS Q
Q2
Scopus Q
Q2

OpenCitations Citation Count
N/A
Source
Journal of Algebra
Volume
422
Issue
Start Page
306
End Page
317
PlumX Metrics
Citations
Scopus : 0
Captures
Mendeley Readers : 5
Google Scholar™


