Machine Learning Based Design of Ku Band Ridge Gap Waveguide Slot Antenna Loaded With Fss for Satellite Internet Applications

dc.contributor.author Nakmouche M.F.
dc.contributor.author Derbal M.C.
dc.contributor.author Allam A.M.M.A.
dc.contributor.author Fawzy D.E.
dc.contributor.author Shams S.I.
dc.contributor.author Nedil M.
dc.contributor.author Elsaadany M.
dc.date.accessioned 2023-06-16T14:59:32Z
dc.date.available 2023-06-16T14:59:32Z
dc.date.issued 2021
dc.description IEEE Antennas and Propagation Society (AP-S);US National Committee (USNC) of the International Union of Radio Science (URSI) en_US
dc.description 2021 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, APS/URSI 2021 -- 4 December 2021 through 10 December 2021 -- 177295 en_US
dc.description.abstract Machine learning has been used in this work for the development of a Ku band Ridge Gap Waveguide (RGW) slot antenna loaded with an FSS superstrate for satellite internet applications. The structure operates from 13.25 to 14.75 GHz with a gain beyond 10 dB using FSS superstrate loading. The developed machine learning model aims to predict the optimal length and width of the radiated slot, where both the Fractional Bandwidth (FBW) and the resonance frequency are considered objective parameters. The simulated results and the anticipated results through the machine learning algorithm are in good agreement. © 2021 IEEE. en_US
dc.identifier.doi 10.1109/APS/URSI47566.2021.9704795
dc.identifier.isbn 9.78E+12
dc.identifier.scopus 2-s2.0-85124043097
dc.identifier.uri https://doi.org/10.1109/APS/URSI47566.2021.9704795
dc.identifier.uri https://hdl.handle.net/20.500.14365/3502
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof 2021 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, APS/URSI 2021 - Proceedings en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject ANN en_US
dc.subject Frequency Selective Surfaces en_US
dc.subject Machine Learning en_US
dc.subject Ridge Gap Waveguide (RGW) en_US
dc.subject Superstrate en_US
dc.subject Bandwidth en_US
dc.subject Learning algorithms en_US
dc.subject Machine learning en_US
dc.subject Microwave antennas en_US
dc.subject Ridge waveguides en_US
dc.subject Slot antennas en_US
dc.subject ANN en_US
dc.subject Frequency-selective surfaces en_US
dc.subject Gap waveguides en_US
dc.subject Internet application en_US
dc.subject Ku band en_US
dc.subject Machine-learning en_US
dc.subject Ridge gap waveguide en_US
dc.subject Satellite internet en_US
dc.subject Superstrates en_US
dc.subject Waveguide slot antennas en_US
dc.subject Frequency selective surfaces en_US
dc.title Machine Learning Based Design of Ku Band Ridge Gap Waveguide Slot Antenna Loaded With Fss for Satellite Internet Applications en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57206657916
gdc.author.scopusid 55582327600
gdc.author.scopusid 23011278600
gdc.author.scopusid 57201750748
gdc.author.scopusid 8320837800
gdc.author.scopusid 36190739600
gdc.author.scopusid 21833761700
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial true
gdc.description.departmenttemp Nakmouche, M.F., Izmir University of Economics, Faculty of Engineering, Izmir, Turkey; Derbal, M.C., School of Engineering, LRTCS UQAT, Val-dOr, Canada; Allam, A.M.M.A., German University in Cairo, Department of Comm Engineering, Cairo, Egypt; Fawzy, D.E., Izmir University of Economics, Faculty of Engineering, Izmir, Turkey; Shams, S.I., Concordia University, Department of ECE, Montreal, Canada; Nedil, M., School of Engineering, LRTCS UQAT, Val-dOr, Canada; Elsaadany, M., Ecole de Technologie Supérieur, Department of EE, Montreal, Canada; Gagnon, G., Ecole de Technologie Supérieur, Department of EE, Montreal, Canada en_US
gdc.description.endpage 1882 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1881 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4213014543
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.7313662E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.2142513E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 0.87514325
gdc.openalex.normalizedpercentile 0.7
gdc.opencitations.count 2
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
gdc.virtual.author Gadelmavla, Diaa
relation.isAuthorOfPublication 3c14aff8-1e15-4390-8354-56a17cba0a5f
relation.isAuthorOfPublication.latestForDiscovery 3c14aff8-1e15-4390-8354-56a17cba0a5f
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication a80bcb24-4ed9-4f67-9bd1-0fb405ff202d
relation.isOrgUnitOfPublication 26a7372c-1a5e-42d9-90b6-a3f7d14cad44
relation.isOrgUnitOfPublication.latestForDiscovery e9e77e3e-bc94-40a7-9b24-b807b2cd0319

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2598.pdf
Size:
414.46 KB
Format:
Adobe Portable Document Format