Machine Learning Based Design of Ku Band Ridge Gap Waveguide Slot Antenna Loaded With Fss for Satellite Internet Applications
| dc.contributor.author | Nakmouche M.F. | |
| dc.contributor.author | Derbal M.C. | |
| dc.contributor.author | Allam A.M.M.A. | |
| dc.contributor.author | Fawzy D.E. | |
| dc.contributor.author | Shams S.I. | |
| dc.contributor.author | Nedil M. | |
| dc.contributor.author | Elsaadany M. | |
| dc.date.accessioned | 2023-06-16T14:59:32Z | |
| dc.date.available | 2023-06-16T14:59:32Z | |
| dc.date.issued | 2021 | |
| dc.description | IEEE Antennas and Propagation Society (AP-S);US National Committee (USNC) of the International Union of Radio Science (URSI) | en_US |
| dc.description | 2021 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, APS/URSI 2021 -- 4 December 2021 through 10 December 2021 -- 177295 | en_US |
| dc.description.abstract | Machine learning has been used in this work for the development of a Ku band Ridge Gap Waveguide (RGW) slot antenna loaded with an FSS superstrate for satellite internet applications. The structure operates from 13.25 to 14.75 GHz with a gain beyond 10 dB using FSS superstrate loading. The developed machine learning model aims to predict the optimal length and width of the radiated slot, where both the Fractional Bandwidth (FBW) and the resonance frequency are considered objective parameters. The simulated results and the anticipated results through the machine learning algorithm are in good agreement. © 2021 IEEE. | en_US |
| dc.identifier.doi | 10.1109/APS/URSI47566.2021.9704795 | |
| dc.identifier.isbn | 9.78E+12 | |
| dc.identifier.scopus | 2-s2.0-85124043097 | |
| dc.identifier.uri | https://doi.org/10.1109/APS/URSI47566.2021.9704795 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14365/3502 | |
| dc.language.iso | en | en_US |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
| dc.relation.ispartof | 2021 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, APS/URSI 2021 - Proceedings | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | ANN | en_US |
| dc.subject | Frequency Selective Surfaces | en_US |
| dc.subject | Machine Learning | en_US |
| dc.subject | Ridge Gap Waveguide (RGW) | en_US |
| dc.subject | Superstrate | en_US |
| dc.subject | Bandwidth | en_US |
| dc.subject | Learning algorithms | en_US |
| dc.subject | Machine learning | en_US |
| dc.subject | Microwave antennas | en_US |
| dc.subject | Ridge waveguides | en_US |
| dc.subject | Slot antennas | en_US |
| dc.subject | ANN | en_US |
| dc.subject | Frequency-selective surfaces | en_US |
| dc.subject | Gap waveguides | en_US |
| dc.subject | Internet application | en_US |
| dc.subject | Ku band | en_US |
| dc.subject | Machine-learning | en_US |
| dc.subject | Ridge gap waveguide | en_US |
| dc.subject | Satellite internet | en_US |
| dc.subject | Superstrates | en_US |
| dc.subject | Waveguide slot antennas | en_US |
| dc.subject | Frequency selective surfaces | en_US |
| dc.title | Machine Learning Based Design of Ku Band Ridge Gap Waveguide Slot Antenna Loaded With Fss for Satellite Internet Applications | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 57206657916 | |
| gdc.author.scopusid | 55582327600 | |
| gdc.author.scopusid | 23011278600 | |
| gdc.author.scopusid | 57201750748 | |
| gdc.author.scopusid | 8320837800 | |
| gdc.author.scopusid | 36190739600 | |
| gdc.author.scopusid | 21833761700 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.collaboration.industrial | true | |
| gdc.description.departmenttemp | Nakmouche, M.F., Izmir University of Economics, Faculty of Engineering, Izmir, Turkey; Derbal, M.C., School of Engineering, LRTCS UQAT, Val-dOr, Canada; Allam, A.M.M.A., German University in Cairo, Department of Comm Engineering, Cairo, Egypt; Fawzy, D.E., Izmir University of Economics, Faculty of Engineering, Izmir, Turkey; Shams, S.I., Concordia University, Department of ECE, Montreal, Canada; Nedil, M., School of Engineering, LRTCS UQAT, Val-dOr, Canada; Elsaadany, M., Ecole de Technologie Supérieur, Department of EE, Montreal, Canada; Gagnon, G., Ecole de Technologie Supérieur, Department of EE, Montreal, Canada | en_US |
| gdc.description.endpage | 1882 | en_US |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 1881 | en_US |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W4213014543 | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 2.0 | |
| gdc.oaire.influence | 2.7313662E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 3.2142513E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0103 physical sciences | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.87514325 | |
| gdc.openalex.normalizedpercentile | 0.7 | |
| gdc.opencitations.count | 2 | |
| gdc.plumx.crossrefcites | 1 | |
| gdc.plumx.mendeley | 5 | |
| gdc.plumx.scopuscites | 6 | |
| gdc.scopus.citedcount | 6 | |
| gdc.virtual.author | Gadelmavla, Diaa | |
| relation.isAuthorOfPublication | 3c14aff8-1e15-4390-8354-56a17cba0a5f | |
| relation.isAuthorOfPublication.latestForDiscovery | 3c14aff8-1e15-4390-8354-56a17cba0a5f | |
| relation.isOrgUnitOfPublication | e9e77e3e-bc94-40a7-9b24-b807b2cd0319 | |
| relation.isOrgUnitOfPublication | a80bcb24-4ed9-4f67-9bd1-0fb405ff202d | |
| relation.isOrgUnitOfPublication | 26a7372c-1a5e-42d9-90b6-a3f7d14cad44 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | e9e77e3e-bc94-40a7-9b24-b807b2cd0319 |
Files
Original bundle
1 - 1 of 1
