Real-Time Motor Fault Detection by 1-D Convolutional Neural Networks

dc.contributor.author İnce, Türker
dc.contributor.author Kiranyaz, Serkan
dc.contributor.author Eren, Levent
dc.contributor.author Askar, Murat
dc.contributor.author Gabbouj, Moncef
dc.date.accessioned 2023-06-16T14:31:06Z
dc.date.available 2023-06-16T14:31:06Z
dc.date.issued 2016
dc.description.abstract Early detection of the motor faults is essential and artificial neural networks are widely used for this purpose. The typical systems usually encapsulate two distinct blocks: feature extraction and classification. Such fixed and hand-crafted features may be a suboptimal choice and require a significant computational cost that will prevent their usage for real-time applications. In this paper, we propose a fast and accurate motor condition monitoring and early fault-detection system using 1-D convolutional neural networks that has an inherent adaptive design to fuse the feature extraction and classification phases of the motor fault detection into a single learning body. The proposed approach is directly applicable to the raw data (signal), and, thus, eliminates the need for a separate feature extraction algorithm resulting in more efficient systems in terms of both speed and hardware. Experimental results obtained using real motor data demonstrate the effectiveness of the proposed method for real-time motor condition monitoring. en_US
dc.identifier.doi 10.1109/TIE.2016.2582729
dc.identifier.issn 0278-0046
dc.identifier.issn 1557-9948
dc.identifier.scopus 2-s2.0-84994474581
dc.identifier.uri https://doi.org/10.1109/TIE.2016.2582729
dc.identifier.uri https://hdl.handle.net/20.500.14365/1980
dc.language.iso en en_US
dc.publisher IEEE-Inst Electrical Electronics Engineers Inc en_US
dc.relation.ispartof Ieee Transactıons on Industrıal Electronıcs en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Convolutional neural networks (CNNs) en_US
dc.subject motor current signature analysis (MCSA) en_US
dc.subject Bearing Damage Detection en_US
dc.subject Diagnosis en_US
dc.subject Signal en_US
dc.subject Decomposition en_US
dc.subject Sensorless en_US
dc.subject Model en_US
dc.title Real-Time Motor Fault Detection by 1-D Convolutional Neural Networks en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Askar, Murat/0000-0001-9244-3340
gdc.author.id Eren, Levent/0000-0002-5804-436X
gdc.author.id Gabbouj, Moncef/0000-0002-9788-2323
gdc.author.scopusid 56259806600
gdc.author.scopusid 7801632948
gdc.author.scopusid 6603027663
gdc.author.scopusid 7003498558
gdc.author.scopusid 7005332419
gdc.author.wosid Askar, Murat/E-7377-2017
gdc.author.wosid Eren, Levent/T-2245-2019
gdc.author.wosid Gabbouj, Moncef/G-4293-2014
gdc.author.wosid Kiranyaz, Serkan/AAK-1416-2021
gdc.bip.impulseclass C2
gdc.bip.influenceclass C2
gdc.bip.popularityclass C1
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department İzmir Ekonomi Üniversitesi en_US
gdc.description.departmenttemp [İnce, Türker; Eren, Levent; Askar, Murat] Izmir Univ Econ, Elect & Elect Engn Dept, TR-35330 Izmir, Turkey; [Kiranyaz, Serkan] Qatar Univ, Dept Elect Engn, Doha 2713, Qatar; [Gabbouj, Moncef] Tampere Univ Technol, Dept Signal Proc, Tampere 33720, Finland en_US
gdc.description.endpage 7075 en_US
gdc.description.issue 11 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 7067 en_US
gdc.description.volume 63 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2461729787
gdc.identifier.wos WOS:000388622100042
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 199.0
gdc.oaire.influence 1.0272554E-7
gdc.oaire.isgreen true
gdc.oaire.keywords Motor current signature analysis
gdc.oaire.keywords Classification (of information)
gdc.oaire.keywords Computational costs
gdc.oaire.keywords Feature extraction and classification
gdc.oaire.keywords Real-time application
gdc.oaire.keywords Extraction
gdc.oaire.keywords Convolutional neural network
gdc.oaire.keywords Convolution
gdc.oaire.keywords Condition monitoring
gdc.oaire.keywords Feature extraction algorithms
gdc.oaire.keywords Feature extraction
gdc.oaire.keywords Sub-optimal choices
gdc.oaire.keywords Fault detection
gdc.oaire.keywords Neural networks
gdc.oaire.keywords Adaptive designs
gdc.oaire.popularity 7.3499496E-7
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 62.56133245
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 1074
gdc.plumx.crossrefcites 532
gdc.plumx.mendeley 647
gdc.plumx.newscount 1
gdc.plumx.scopuscites 1344
gdc.scopus.citedcount 1346
gdc.virtual.author İnce, Türker
gdc.virtual.author Eren, Levent
gdc.virtual.author Aşkar, Murat
gdc.wos.citedcount 1056
relation.isAuthorOfPublication 620fe4b0-bfe7-4e8f-8157-31e93f36a89b
relation.isAuthorOfPublication 1df92488-78fc-4fea-870c-e4a6c604f929
relation.isAuthorOfPublication a4ba969f-355b-4eb9-8c83-8d7e42efb57d
relation.isAuthorOfPublication.latestForDiscovery 620fe4b0-bfe7-4e8f-8157-31e93f36a89b
relation.isOrgUnitOfPublication b02722f0-7082-4d8a-8189-31f0230f0e2f
relation.isOrgUnitOfPublication 26a7372c-1a5e-42d9-90b6-a3f7d14cad44
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication.latestForDiscovery b02722f0-7082-4d8a-8189-31f0230f0e2f

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1980.pdf
Size:
917.24 KB
Format:
Adobe Portable Document Format