Real-Time Motor Fault Detection by 1-D Convolutional Neural Networks
| dc.contributor.author | İnce, Türker | |
| dc.contributor.author | Kiranyaz, Serkan | |
| dc.contributor.author | Eren, Levent | |
| dc.contributor.author | Askar, Murat | |
| dc.contributor.author | Gabbouj, Moncef | |
| dc.date.accessioned | 2023-06-16T14:31:06Z | |
| dc.date.available | 2023-06-16T14:31:06Z | |
| dc.date.issued | 2016 | |
| dc.description.abstract | Early detection of the motor faults is essential and artificial neural networks are widely used for this purpose. The typical systems usually encapsulate two distinct blocks: feature extraction and classification. Such fixed and hand-crafted features may be a suboptimal choice and require a significant computational cost that will prevent their usage for real-time applications. In this paper, we propose a fast and accurate motor condition monitoring and early fault-detection system using 1-D convolutional neural networks that has an inherent adaptive design to fuse the feature extraction and classification phases of the motor fault detection into a single learning body. The proposed approach is directly applicable to the raw data (signal), and, thus, eliminates the need for a separate feature extraction algorithm resulting in more efficient systems in terms of both speed and hardware. Experimental results obtained using real motor data demonstrate the effectiveness of the proposed method for real-time motor condition monitoring. | en_US |
| dc.identifier.doi | 10.1109/TIE.2016.2582729 | |
| dc.identifier.issn | 0278-0046 | |
| dc.identifier.issn | 1557-9948 | |
| dc.identifier.scopus | 2-s2.0-84994474581 | |
| dc.identifier.uri | https://doi.org/10.1109/TIE.2016.2582729 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14365/1980 | |
| dc.language.iso | en | en_US |
| dc.publisher | IEEE-Inst Electrical Electronics Engineers Inc | en_US |
| dc.relation.ispartof | Ieee Transactıons on Industrıal Electronıcs | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Convolutional neural networks (CNNs) | en_US |
| dc.subject | motor current signature analysis (MCSA) | en_US |
| dc.subject | Bearing Damage Detection | en_US |
| dc.subject | Diagnosis | en_US |
| dc.subject | Signal | en_US |
| dc.subject | Decomposition | en_US |
| dc.subject | Sensorless | en_US |
| dc.subject | Model | en_US |
| dc.title | Real-Time Motor Fault Detection by 1-D Convolutional Neural Networks | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Askar, Murat/0000-0001-9244-3340 | |
| gdc.author.id | Eren, Levent/0000-0002-5804-436X | |
| gdc.author.id | Gabbouj, Moncef/0000-0002-9788-2323 | |
| gdc.author.scopusid | 56259806600 | |
| gdc.author.scopusid | 7801632948 | |
| gdc.author.scopusid | 6603027663 | |
| gdc.author.scopusid | 7003498558 | |
| gdc.author.scopusid | 7005332419 | |
| gdc.author.wosid | Askar, Murat/E-7377-2017 | |
| gdc.author.wosid | Eren, Levent/T-2245-2019 | |
| gdc.author.wosid | Gabbouj, Moncef/G-4293-2014 | |
| gdc.author.wosid | Kiranyaz, Serkan/AAK-1416-2021 | |
| gdc.bip.impulseclass | C2 | |
| gdc.bip.influenceclass | C2 | |
| gdc.bip.popularityclass | C1 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | İzmir Ekonomi Üniversitesi | en_US |
| gdc.description.departmenttemp | [İnce, Türker; Eren, Levent; Askar, Murat] Izmir Univ Econ, Elect & Elect Engn Dept, TR-35330 Izmir, Turkey; [Kiranyaz, Serkan] Qatar Univ, Dept Elect Engn, Doha 2713, Qatar; [Gabbouj, Moncef] Tampere Univ Technol, Dept Signal Proc, Tampere 33720, Finland | en_US |
| gdc.description.endpage | 7075 | en_US |
| gdc.description.issue | 11 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 7067 | en_US |
| gdc.description.volume | 63 | en_US |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2461729787 | |
| gdc.identifier.wos | WOS:000388622100042 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 199.0 | |
| gdc.oaire.influence | 1.0272554E-7 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Motor current signature analysis | |
| gdc.oaire.keywords | Classification (of information) | |
| gdc.oaire.keywords | Computational costs | |
| gdc.oaire.keywords | Feature extraction and classification | |
| gdc.oaire.keywords | Real-time application | |
| gdc.oaire.keywords | Extraction | |
| gdc.oaire.keywords | Convolutional neural network | |
| gdc.oaire.keywords | Convolution | |
| gdc.oaire.keywords | Condition monitoring | |
| gdc.oaire.keywords | Feature extraction algorithms | |
| gdc.oaire.keywords | Feature extraction | |
| gdc.oaire.keywords | Sub-optimal choices | |
| gdc.oaire.keywords | Fault detection | |
| gdc.oaire.keywords | Neural networks | |
| gdc.oaire.keywords | Adaptive designs | |
| gdc.oaire.popularity | 7.3499496E-7 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 62.56133245 | |
| gdc.openalex.normalizedpercentile | 1.0 | |
| gdc.openalex.toppercent | TOP 1% | |
| gdc.opencitations.count | 1074 | |
| gdc.plumx.crossrefcites | 532 | |
| gdc.plumx.mendeley | 647 | |
| gdc.plumx.newscount | 1 | |
| gdc.plumx.scopuscites | 1344 | |
| gdc.scopus.citedcount | 1346 | |
| gdc.virtual.author | İnce, Türker | |
| gdc.virtual.author | Eren, Levent | |
| gdc.virtual.author | Aşkar, Murat | |
| gdc.wos.citedcount | 1056 | |
| relation.isAuthorOfPublication | 620fe4b0-bfe7-4e8f-8157-31e93f36a89b | |
| relation.isAuthorOfPublication | 1df92488-78fc-4fea-870c-e4a6c604f929 | |
| relation.isAuthorOfPublication | a4ba969f-355b-4eb9-8c83-8d7e42efb57d | |
| relation.isAuthorOfPublication.latestForDiscovery | 620fe4b0-bfe7-4e8f-8157-31e93f36a89b | |
| relation.isOrgUnitOfPublication | b02722f0-7082-4d8a-8189-31f0230f0e2f | |
| relation.isOrgUnitOfPublication | 26a7372c-1a5e-42d9-90b6-a3f7d14cad44 | |
| relation.isOrgUnitOfPublication | e9e77e3e-bc94-40a7-9b24-b807b2cd0319 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | b02722f0-7082-4d8a-8189-31f0230f0e2f |
Files
Original bundle
1 - 1 of 1
