Development of a High Gain Fss Reflector Backed Monopole Antenna Using Machine Learning for 5g Applications

dc.contributor.author Nakmouche M.F.
dc.contributor.author Allam A.M.M.A.
dc.contributor.author Fawzy D.E.
dc.contributor.author Lin D.-B.
dc.date.accessioned 2023-06-16T15:03:08Z
dc.date.available 2023-06-16T15:03:08Z
dc.date.issued 2021
dc.description.abstract —This work is devoted to the development of a high gain Frequency Selective Surface (FSS) reflector backed monopole antenna using Machine Learning (ML) techniques for 5G applications. It analyzes and solves the complexity of the determination of the optimum position of the FSS reflector and the ground dimension of the monopole in this composite antenna structure since there are no solid and standard formulations for the computation of these two parameters. ML modelling is involved in the development process for the sake of gain enhancement. It is applied to get the optimum position of the FSS reflector layer and the ground dimension of the monopole antenna. The proposed antenna structure is 50 mm × 50 mm, implemented on a Rogers 5880 substrate (thickness = 1.6 mm). Two different patch antenna structures, with and without FSS, are developed and considered in the current work. The antenna performance in terms of operating frequency, return loss, and gain is analysed using the finite element methods. The design is optimized for a targeting frequency band operating at 6 GHz (5.53 GHz to 6.36 GHz), which is suitable for 5G Sub-6 GHz applications. The obtained results show that the integration of the FSS layer below the antenna structure provides a simple and efficient method to obtain a low-profile and high-gain antenna. Finally, the proposed design is fabricated and measured, and a good agreement between the simulated and measured results is obtained. A comparison with similar studies in the literature is presented and shows that the current design is more compact in size, and the obtained radiation efficiency and gain are higher than other designs. © 2021, Electromagnetics Academy. All rights reserved. en_US
dc.identifier.doi 10.2528/PIERM21083103
dc.identifier.issn 1937-8726
dc.identifier.scopus 2-s2.0-85120868192
dc.identifier.uri https://doi.org/10.2528/PIERM21083103
dc.identifier.uri https://hdl.handle.net/20.500.14365/3745
dc.language.iso en en_US
dc.publisher Electromagnetics Academy en_US
dc.relation.ispartof Progress In Electromagnetics Research M en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject 5G mobile communication systems en_US
dc.subject Antenna reflectors en_US
dc.subject Frequency selective surfaces en_US
dc.subject Machine learning en_US
dc.subject Microstrip antennas en_US
dc.subject Microwave antennas en_US
dc.subject Monopole antennas en_US
dc.subject Slot antennas en_US
dc.subject 'current en_US
dc.subject Antenna structures en_US
dc.subject Development process en_US
dc.subject Frequency-selective surfaces en_US
dc.subject Gain frequencies en_US
dc.subject High gain en_US
dc.subject Machine learning models en_US
dc.subject Machine learning techniques en_US
dc.subject Optimum position en_US
dc.subject Two parameter en_US
dc.subject Reflection en_US
dc.title Development of a High Gain Fss Reflector Backed Monopole Antenna Using Machine Learning for 5g Applications en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57206657916
gdc.author.scopusid 23011278600
gdc.author.scopusid 7403692642
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.departmenttemp Nakmouche, M.F., Faculty of Engineering, İzmir University of Economics, Izmir, Turkey; Allam, A.M.M.A., Department of Communication Engineering, German University in Cairo, Cairo, Egypt; Fawzy, D.E., Faculty of Engineering, İzmir University of Economics, Izmir, Turkey; Lin, D.-B., Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan en_US
gdc.description.endpage 194 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 183 en_US
gdc.description.volume 105 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W3213100931
gdc.identifier.wos WOS:000720119500017
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 12.0
gdc.oaire.influence 3.5029335E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.14306085E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 5.83743826
gdc.openalex.normalizedpercentile 0.96
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 16
gdc.plumx.mendeley 22
gdc.plumx.scopuscites 31
gdc.scopus.citedcount 31
gdc.virtual.author Gadelmavla, Diaa
gdc.wos.citedcount 15
relation.isAuthorOfPublication 3c14aff8-1e15-4390-8354-56a17cba0a5f
relation.isAuthorOfPublication.latestForDiscovery 3c14aff8-1e15-4390-8354-56a17cba0a5f
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication a80bcb24-4ed9-4f67-9bd1-0fb405ff202d
relation.isOrgUnitOfPublication 26a7372c-1a5e-42d9-90b6-a3f7d14cad44
relation.isOrgUnitOfPublication.latestForDiscovery e9e77e3e-bc94-40a7-9b24-b807b2cd0319

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2825.pdf
Size:
1.88 MB
Format:
Adobe Portable Document Format