An efficient image dehazing for accurate object detection

dc.contributor.advisor Türkan, Mehmet
dc.contributor.author Kaçmaz, Eray
dc.date.accessioned 2023-10-24T08:10:16Z
dc.date.available 2023-10-24T08:10:16Z
dc.date.issued 2023
dc.description.abstract Hava olayı olarak bilinen "sis", dış manzarayı görme yeteneğini önemli ölçüde azaltır. Atmosferdeki ışığı emen ve ışığı saçan partiküller bunun başlıca nedenidir. Bu tez çalışması, hassas nesne tanımama için görüntü birleştirme tabanlı bir sis giderme yöntemi sunmaktadır. Birleştirme sürecini uygulamak için, her görüntünün her RGB katmanı için ağırlık haritaları, gama düzeltmesi yapılmış görüntüler kullanılarak hesaplanmaktadır. Daha doğru sonuçlar elde etmek için, füzyon işleminde girdiler için Laplace piramidi ve ağırlık haritaları için Gauss piramidi kombinasyonu kullanılmaktadır. Sisli girdi ve nihai çıktı görüntüleri, nesneleri doğru bir şekilde tespit etmek için YOLOv7 algoritmasında test edilmektedir. Geliştirilen yöntemi diğer yaklaşımlarla karşılaştırmak için kapsamlı testler yapılmıştır. Çeşitli sisli görüntüler üzerine sunulan sonuçlar, önerilen algoritmanın etkinliğini hem görsel hem de nicel olarak değerlendirerek yöntemin literatürdeki birçok öncü yönteme göre üstünlüğü sergilenmektedir. en_US
dc.description.abstract The weather phenomenon known as "haze" significantly reduces the ability to see external scenery. The light-absorbing and light-scattering particulates mainly bring this on in the atmosphere. This thesis suggests a single image fusion-based dehazing method for precise object identification. To apply the fusion process, weight maps are computed for each RGB layer of each image using a collection of gamma-corrected images. To generate more accurate results, the combination of the Laplacian pyramid for inputs and the Gaussian pyramid for weight maps is used in the fusion process. Hazy input and final output images are tested in the YOLOv7 algorithm to detect objects accurately. Comprehensive tests are conducted to compare the proposed method with the other approaches. The experimental results on a range of hazy pictures demonstrate the prior's strength both visually and quantitatively, showcasing the superiority of the developed algorithm over several cutting-edge methods in the literature. en_US]
dc.identifier.uri https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=a0OMTmEd_3mfOBxT8SiBTOZ5rNGMqevkjal962xax8OIIytawSdiSOxiEL4Th2tB
dc.identifier.uri https://hdl.handle.net/20.500.14365/4860
dc.language.iso en en_US
dc.publisher İzmir Ekonomi Üniversitesi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol en_US
dc.subject Computer Engineering and Computer Science and Control en_US
dc.title An efficient image dehazing for accurate object detection en_US
dc.title.alternative Hassas Nesne Tanıma için Etkili Bir Görüntü Sis Giderme Yöntemi en_US
dc.type Master Thesis en_US
dspace.entity.type Publication
gdc.author.institutional Kaçmaz, Eray
gdc.coar.access open access
gdc.coar.type text::thesis::master thesis
gdc.description.department İEÜ, Lisansüstü Eğitim Enstitüsü, Bilgisayar Mühendisliği Ana Bilim Dalı en_US
gdc.description.endpage 52 en_US
gdc.description.publicationcategory Tez en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1 en_US
gdc.description.wosquality N/A
gdc.identifier.yoktezid 814290 en_US
gdc.virtual.author Türkan, Mehmet
gdc.virtual.author Türkan, Mehmet
relation.isAuthorOfPublication 7a969b6f-8dc6-4730-a7b1-c1dba8089d68
relation.isAuthorOfPublication 76946aef-c81f-4033-be60-a1c814aec77d
relation.isAuthorOfPublication.latestForDiscovery 7a969b6f-8dc6-4730-a7b1-c1dba8089d68
relation.isOrgUnitOfPublication b02722f0-7082-4d8a-8189-31f0230f0e2f
relation.isOrgUnitOfPublication 26a7372c-1a5e-42d9-90b6-a3f7d14cad44
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication.latestForDiscovery b02722f0-7082-4d8a-8189-31f0230f0e2f

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4860.pdf
Size:
1.41 MB
Format:
Adobe Portable Document Format