A Regularization Algorithm for Local Key Detection

dc.contributor.author Gedizlioğlu, Çınar
dc.contributor.author Erol, Kutluhan
dc.date.accessioned 2024-06-01T08:32:33Z
dc.date.available 2024-06-01T08:32:33Z
dc.date.issued 2024
dc.description.abstract In the field of music information retrieval, the detection of global key in both popular and classical music has been studied extensively, but local key detection has been studied to a lesser extent, even though modulation is an important component of compositional style. It is particularly challenging to identify key change boundaries correctly. We modeled this task as an optimization problem, that of finding out how to divide a piece into sections in different keys taking into consideration both the quality of the fit between the key and the section and the number of sections. We determined the optimal assignment of key to section using the Krumhansl-Schmuckler algorithm with a slightly modified version of the Krumhansl and Kessler key profile. We included a regularization algorithm in the formulation of our problem to balance the number of sections and avoid superfluous modulations. Using a dataset of 80 randomly chosen pieces of music in a variety of genres and levels of complexity, we compared our algorithm with a hidden Markov model (HMM) to determine which method is better for identifying local key. Our approach yielded significantly more accurate results and suggests future avenues of research. en_US
dc.identifier.doi 10.1177/10298649241245075
dc.identifier.issn 1029-8649
dc.identifier.issn 2045-4147
dc.identifier.scopus 2-s2.0-85191098204
dc.identifier.uri https://doi.org/10.1177/10298649241245075
dc.identifier.uri https://hdl.handle.net/20.500.14365/5333
dc.language.iso en en_US
dc.publisher Sage publications ltd en_US
dc.relation.ispartof Musicae Scientiae en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject symbolic key finding en_US
dc.subject local key finding en_US
dc.subject music information retrieval en_US
dc.subject symbolic music analysis en_US
dc.subject Music Recordings en_US]
dc.subject Songs en_US]
dc.title A Regularization Algorithm for Local Key Detection en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id erol, kutluhan/0000-0003-1816-5877
gdc.author.institutional
gdc.author.scopusid 58997801900
gdc.author.scopusid 57209808320
gdc.author.wosid erol, kutluhan/V-4304-2018
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department İzmir Ekonomi Üniversitesi en_US
gdc.description.departmenttemp [Gedizlioglu, Cinar; Erol, Kutluhan] Izmir Univ Econ, Izmir, Turkiye; [Gedizlioglu, Cinar] Izmir Univ Econ, Comp Engn, Sakarya Caddesi 156, TR-35330 Izmir, Turkiye en_US
gdc.description.endpage 739
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 723
gdc.description.volume 28
gdc.description.wosquality Q3
gdc.identifier.openalex W4395010133
gdc.identifier.wos WOS:001206690900001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.3737945E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 05 social sciences
gdc.oaire.sciencefields 0501 psychology and cognitive sciences
gdc.oaire.sciencefields 06 humanities and the arts
gdc.oaire.sciencefields 0604 arts
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.04
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Gedizlioğlu, Çınar
gdc.virtual.author Erol, Kutluhan
gdc.wos.citedcount 0
relation.isAuthorOfPublication 278863f4-4424-49a7-bd01-587321ac6b0c
relation.isAuthorOfPublication 4fd81154-e978-4c33-acd0-3df669f81120
relation.isAuthorOfPublication.latestForDiscovery 278863f4-4424-49a7-bd01-587321ac6b0c
relation.isOrgUnitOfPublication b4714bc5-c5ae-478f-b962-b7204c948b70
relation.isOrgUnitOfPublication 26a7372c-1a5e-42d9-90b6-a3f7d14cad44
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication.latestForDiscovery b4714bc5-c5ae-478f-b962-b7204c948b70

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5333.pdf
Size:
2.25 MB
Format:
Adobe Portable Document Format