Speech Emotion Recognition: Emotional Models, Databases, Features, Preprocessing Methods, Supporting Modalities, and Classifiers

dc.contributor.author Akcay, Mehmet Berkehan
dc.contributor.author Oguz, Kaya
dc.date.accessioned 2023-06-16T14:11:39Z
dc.date.available 2023-06-16T14:11:39Z
dc.date.issued 2020
dc.description.abstract Speech is the most natural way of expressing ourselves as humans. It is only natural then to extend this communication medium to computer applications. We define speech emotion recognition (SER) systems as a collection of methodologies that process and classify speech signals to detect the embedded emotions. SER is not a new field, it has been around for over two decades, and has regained attention thanks to the recent advancements. These novel studies make use of the advances in all fields of computing and technology, making it necessary to have an update on the current methodologies and techniques that make SER possible. We have identified and discussed distinct areas of SER, provided a detailed survey of current literature of each, and also listed the current challenges. en_US
dc.identifier.doi 10.1016/j.specom.2019.12.001
dc.identifier.issn 0167-6393
dc.identifier.issn 1872-7182
dc.identifier.scopus 2-s2.0-85076679231
dc.identifier.uri https://doi.org/10.1016/j.specom.2019.12.001
dc.identifier.uri https://hdl.handle.net/20.500.14365/1445
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof Speech Communıcatıon en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Speech emotion recognition en_US
dc.subject Survey en_US
dc.subject Speech features en_US
dc.subject Classification en_US
dc.subject Speech databases en_US
dc.subject Voice Quality en_US
dc.subject Communicating Emotion en_US
dc.subject Spectral Features en_US
dc.subject Neural-Networks en_US
dc.subject Classification en_US
dc.subject Valence en_US
dc.subject Expression en_US
dc.subject Arousal en_US
dc.subject Adversarial en_US
dc.subject Audio en_US
dc.title Speech Emotion Recognition: Emotional Models, Databases, Features, Preprocessing Methods, Supporting Modalities, and Classifiers en_US
dc.type Review Article en_US
dspace.entity.type Publication
gdc.author.id Oguz, Kaya/0000-0002-1860-9127
gdc.author.id AKCAY, Mehmet Berkehan/0000-0001-9039-5453
gdc.author.scopusid 57196440541
gdc.author.scopusid 54902980200
gdc.author.wosid Oguz, Kaya/A-1812-2016
gdc.bip.impulseclass C1
gdc.bip.influenceclass C3
gdc.bip.popularityclass C2
gdc.coar.access metadata only access
gdc.coar.type other
gdc.collaboration.industrial false
gdc.description.department İzmir Ekonomi Üniversitesi en_US
gdc.description.departmenttemp [Akcay, Mehmet Berkehan] Izmir Univ Econ, Dept Software Engn, Izmir, Turkey; [Oguz, Kaya] Izmir Univ Econ, Dept Comp Engn, Izmir, Turkey en_US
gdc.description.endpage 76 en_US
gdc.description.publicationcategory Diğer en_US
gdc.description.scopusquality Q2
gdc.description.startpage 56 en_US
gdc.description.volume 116 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2997399314
gdc.identifier.wos WOS:000525305700005
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 379.0
gdc.oaire.influence 4.211404E-8
gdc.oaire.isgreen false
gdc.oaire.popularity 4.362144E-7
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 71.03957118
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 481
gdc.plumx.crossrefcites 534
gdc.plumx.mendeley 658
gdc.plumx.scopuscites 623
gdc.scopus.citedcount 623
gdc.virtual.author Oğuz, Kaya
gdc.wos.citedcount 406
relation.isAuthorOfPublication 352071e4-5cb7-4239-be4d-3132ba33986c
relation.isAuthorOfPublication.latestForDiscovery 352071e4-5cb7-4239-be4d-3132ba33986c
relation.isOrgUnitOfPublication b4714bc5-c5ae-478f-b962-b7204c948b70
relation.isOrgUnitOfPublication 26a7372c-1a5e-42d9-90b6-a3f7d14cad44
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication.latestForDiscovery b4714bc5-c5ae-478f-b962-b7204c948b70

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
492.pdf
Size:
1.14 MB
Format:
Adobe Portable Document Format