Optimization Problem of the Rigid Body Motion With the Geodesic Frame

dc.contributor.author Sager I.
dc.contributor.author Abazari N.
dc.date.accessioned 2023-06-16T15:06:28Z
dc.date.available 2023-06-16T15:06:28Z
dc.date.issued 2010
dc.description.abstract This study tries to solve the motion of a rigid body, its optimal control problem on the Lie group SE(3) with respect to geodesic frame of curves on the surface in Euclidian 3-space. In this case, optimal control problem is solved on the Lie group SE(3). The motion planning problem is formulated as an optimal control problem in which the cost function to be minimized is equivalent to integrate the conjugated square norm of Darboux vector with respect to the geodesic frame of the curve. The coordinate free Maximum Principle is applied to the theory of integrable Hamiltonian systems to solve this problem. en_US
dc.identifier.issn 2010-376X
dc.identifier.scopus 2-s2.0-78651584375
dc.identifier.uri https://hdl.handle.net/20.500.14365/3942
dc.language.iso en en_US
dc.relation.ispartof World Academy of Science, Engineering and Technology en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Geodesic frame en_US
dc.subject Hamiltonian vector field en_US
dc.subject Lie group en_US
dc.subject Optimal control en_US
dc.subject Rigid body motion en_US
dc.subject Hamiltonian vector fields en_US
dc.subject Integrable Hamiltonian system en_US
dc.subject Lie group en_US
dc.subject Motion planning problems en_US
dc.subject Optimal control problem en_US
dc.subject Optimal controls en_US
dc.subject Optimization problems en_US
dc.subject Rigid body en_US
dc.subject Rigid-body motion en_US
dc.subject Geodesy en_US
dc.subject Hamiltonians en_US
dc.subject Optimization en_US
dc.subject Problem solving en_US
dc.title Optimization Problem of the Rigid Body Motion With the Geodesic Frame en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 36806643400
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.departmenttemp Sager, I., Department of Mathematics, Izmir University of Economics, Izmir, Turkey; Abazari, N., Department of Mathematics, Islamic Azad university-Ardabil Branch, Ardabil, Iran en_US
gdc.description.endpage 256 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 251 en_US
gdc.description.volume 63 en_US
gdc.description.wosquality N/A
gdc.index.type Scopus
gdc.scopus.citedcount 0
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication.latestForDiscovery e9e77e3e-bc94-40a7-9b24-b807b2cd0319

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2972.pdf
Size:
133.49 KB
Format:
Adobe Portable Document Format