Nanopartikül Biyosentezinde Ortalama Çap Tahmini ve Optimizasyonu için Yanıt Yüzeyi Yöntemi ve Makine Öğreniminin Birleştirilmesi

Loading...
Publication Logo

Date

2024

Authors

Çalışkan Bilgin, Gülizar
Topalli, Ayca Kumluca

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

The synthesis of nanoparticles from biological sources by green synthesis method and production optimization studies are increasing in popularity today. However, the variability of biological source and environmental effects in such processes leads to different morphology and functionality in the final product. In this study, microalgae was used as a bioreduction agent in nanoparticle synthesis and analyses of the harmonic mean particle diameter of FeSO4 concentration and its ratio with microalgae medium were carried out in particle synthesis. In this two-stage study, the experimental design was carried out first, and the particle diameters obtained by data generation were developed by machine learning. The error rates at both stages were compared and improvements were recorded. As a result, a new low-cost, fast, simple and environmentally friendly approach was introduced to solve the data insufficiency problem and used in particle diameter estimation. The results obtained showed that the proposed combined strategy provides better nanoparticle size estimates than the statistical approach alone. The proposed method is applicable to a wide range of biotechnology and bioengineering applications with significant advanced knowledge.

Description

Keywords

Nanoparticle Synthesis, Data Generation, Response Surface Methodology, Machine Learning

Fields of Science

Citation

WoS Q

N/A

Scopus Q

N/A
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

2024 Medical Technologies Congress -- OCT 10-12, 2024 -- Bodrum, TURKIYE

Volume

Issue

Start Page

1

End Page

4
PlumX Metrics
Citations

Scopus : 0

Captures

Mendeley Readers : 2

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals