Multirectangular Characteristic Invariants for Power L-Kothe Spaces of First Type
| dc.contributor.author | Karapinar, Erdal | |
| dc.date.accessioned | 2023-06-16T14:11:09Z | |
| dc.date.available | 2023-06-16T14:11:09Z | |
| dc.date.issued | 2007 | |
| dc.description.abstract | Let l be a Banach sequence space with a monotone norm \\ center dot \\(l), in which the canonical system (e(i)) is a normalized unconditional basis. We consider the problem of quasi-diagonal isomorphism of first type power l-Kothe spaces E-l (lambda, a) (see (1) below). From [P.A. Chalov, V.P. Zahariuta, On quasi-diagonal isomorphism of generalized power spaces, in: Linear Topological Spaces and Complex Analysis, vol. 2, METU - TUBITAK, Ankara, 1995, pp. 35-44; P.A. Chalov, T. Terzioglu, V.P. Zahariuta, First type power Kothe spaces and m-rectangular invariants, in: Linear Topological Spaces and Complex Analysis, vol. 3, METU - TUBITAK, Ankara, 1997, pp. 30-44; P.A. Chalov, T. Terzioglu, V.P. Zahariuta, Multirectangular invariants for power Kothe spaces, J. Math. Anal. Appl. 297 (2004) 673-695] it is known that the system of all m-rectangle characteristics mu(m) (see (9) below) is a complete quasi-diagonal invariant on the class of all first type power Kothe spaces [V.P. Zahariuta, On isomorphisms and quasi-equivalence of bases of power Kothe spaces, Soviet Math. Dokl. 16 (1975) 411-414; V.P. Zahariuta, Linear topologic invariants and their applications to isomorphic classification of generalized power spaces, Turkish J. Math. 20 (1996) 237-289], if the relation of equivalency of systems (mu(X)(m)) and (mu((X) over tilde)(m)) is defined by some natural estimates with constants independent of m. Deriving the characteristic (beta) over tilde from the characteristic beta (see [V.P. Zahariuta, Linear topological invariants and isomorphisms of spaces of analytic functions, in: Matem. Analiz i ego Pril., vol. 2, Rostov Univ., Rostov-on-Don, 1970, pp. 3-13 (in Russian), in: Matem. Analiz i ego Pril., vol. 3, Rostov Univ., Rostov-on-Don, 1971, pp. 176-180 (in Russian); V.P. Zahariuta, Generalized Mityagin invariants and a continuum of mutually nonisomorphic spaces of analytic functions, Funktsional. Anal. i Prilozhen. 11 (1977) 24-30 (in Russian); V.P. Zahariuta, Compact operators and isomorphisms of Kothe spaces, in: Aktualnye Voprosy Matem. Analiza, vol. 46, Rostov Univ., Rostov-on-Don, 1978, pp. 62-71 (in Russian); P.A. Chalov, P.B. Djakov, V.P. Zahariuta, Compound invariants and embeddings of Cartesian products, Studia Math. 137 (1) (1999) 33-47; P.B. Djakov, M. Yurdakul, V.P. Zahariuta, Isomorphic classification of Cartesian products, Michigan Math. J. 43 (1996) 221-229; V.P. Zahariuta, Linear topologic invariants and their applications to isomorphic classification of generalized power spaces, Turkish J. Math. 20 (1996) 237-289], and using the S. Krein's interpolation method of analytic scale, we are able to generalize some results of [P.A. Chalov, V.P. Zahariuta, On quasi-diagonal isomorphism of generalized power spaces, in: Linear Topological Spaces and Complex Analysis, vol. 2, METU - TUBITAK, Ankara, 1995, pp. 35-44; P.A. Chalov, T. Terzioglu, V.P. Zahariuta, First type power Kothe spaces and m-rectangular invariants, in: Linear Topological Spaces and Complex Analysis, vol. 3, METU - TUBITAK, Ankara, 1997, pp. 30-44; P.A. Chalov, T. Terzioglu, V.P. Zahariuta, Multirectangular invariants for power Kothe spaces, J. Math. Anal. Appl. 297 (2004) 673-695]. (C) 2007 Elsevier Inc. All rights reserved. | en_US |
| dc.identifier.doi | 10.1016/j.jmaa.2007.01.049 | |
| dc.identifier.issn | 0022-247X | |
| dc.identifier.scopus | 2-s2.0-34347250450 | |
| dc.identifier.uri | https://doi.org/10.1016/j.jmaa.2007.01.049 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14365/1292 | |
| dc.language.iso | en | en_US |
| dc.publisher | Academic Press Inc Elsevier Science | en_US |
| dc.relation.ispartof | Journal of Mathematıcal Analysıs And Applıcatıons | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | multirectangular characteristic | en_US |
| dc.subject | power l-Kothe spaces | en_US |
| dc.subject | Linear topological invariants | en_US |
| dc.subject | Cartesian Products | en_US |
| dc.title | Multirectangular Characteristic Invariants for Power L-Kothe Spaces of First Type | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | KARAPINAR, ERDAL/0000-0002-6798-3254 | |
| gdc.author.scopusid | 16678995500 | |
| gdc.author.wosid | KARAPINAR, ERDAL/H-3177-2011 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | İzmir Ekonomi Üniversitesi | en_US |
| gdc.description.departmenttemp | Izmir Univ Econ, Dept Math, TR-35330 Izmir, Turkey | en_US |
| gdc.description.endpage | 92 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 79 | en_US |
| gdc.description.volume | 335 | en_US |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W1999070009 | |
| gdc.identifier.wos | WOS:000248445800008 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | HYBRID | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.4895952E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Linear topological invariants | |
| gdc.oaire.keywords | Applied Mathematics | |
| gdc.oaire.keywords | Multirectangular characteristic | |
| gdc.oaire.keywords | Power ℓ-Köthe spaces | |
| gdc.oaire.keywords | Analysis | |
| gdc.oaire.keywords | power \(\ell\)-Köthe spaces | |
| gdc.oaire.keywords | compound invariants | |
| gdc.oaire.keywords | linear topological invariants | |
| gdc.oaire.keywords | quasi-diagonal isomorphism | |
| gdc.oaire.keywords | Topological invariants ((DN), (\(\Omega\)), etc.) for locally convex spaces | |
| gdc.oaire.keywords | multirectangular characteristic invariants | |
| gdc.oaire.keywords | Sequence spaces (including Köthe sequence spaces) | |
| gdc.oaire.popularity | 3.5125106E-10 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 1.86974915 | |
| gdc.openalex.normalizedpercentile | 0.79 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 2 | |
| gdc.plumx.scopuscites | 6 | |
| gdc.scopus.citedcount | 6 | |
| gdc.virtual.author | Karapinar, Erdal | |
| gdc.wos.citedcount | 2 | |
| relation.isAuthorOfPublication | 7119f5cd-e5a7-44c6-a690-d427c0fe6e31 | |
| relation.isAuthorOfPublication.latestForDiscovery | 7119f5cd-e5a7-44c6-a690-d427c0fe6e31 | |
| relation.isOrgUnitOfPublication | 9fb4f7d7-bc42-4427-abc8-046d10845333 | |
| relation.isOrgUnitOfPublication | a42dba5b-3d5d-430e-8f4c-10d6dbc69123 | |
| relation.isOrgUnitOfPublication | e9e77e3e-bc94-40a7-9b24-b807b2cd0319 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 9fb4f7d7-bc42-4427-abc8-046d10845333 |
Files
Original bundle
1 - 1 of 1
