Another View of BZ-Algebras

dc.contributor.author Öner, T.
dc.contributor.author Katican, T.
dc.contributor.author Borumand Saeid, A.B.
dc.date.accessioned 2025-12-30T15:59:30Z
dc.date.available 2025-12-30T15:59:30Z
dc.date.issued 2025
dc.description.abstract In this work, Sheffer stroke BZ-algebra (briefly, SBZ-algebra) is introduced and its properties are examined. Then a partial order is defined on SBZ-algebras. It is shown that a Cartesian product of two SBZ-algebras is an SBZ-algebra. After giving SBZ-ideals and SBZ-subalgebras, it is proved that any SBZ-ideal of an SBZ-algebra is an ideal of this SBZ-algebra and vice versa, and that it is also an SBZ-subalgebra. Also, a congruence relation on an SBZ-algebra is determined by an SBZ-ideal, and the quotient of an SBZ-algebra by a congruence relation on this algebra is constructed. Thus, it is proved that the quotient of the SBZ-algebra is an SBZ-algebra. Furthermore, we define SBZ-homomorphisms between SBZ-algebras and state that the kernel of an SBZ-homomorphism is an SBZ-ideal and so an SBZ-subalgebra. Hence, a new SBZ-homomorphism is described by means of the kernel of an SBZ-homomorphism. Finally, we show that some properties are preserved under SBZ-homomorphisms. © 2025 University of Guilan. en_US
dc.identifier.doi 10.22124/jart.2024.26251.1612
dc.identifier.issn 2345-3931
dc.identifier.scopus 2-s2.0-105024487899
dc.identifier.uri https://doi.org/10.22124/jart.2024.26251.1612
dc.identifier.uri https://hdl.handle.net/20.500.14365/8481
dc.language.iso en en_US
dc.publisher University of Guilan en_US
dc.relation.ispartof Journal of Algebra and Related Topics en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject BZ-Algebra en_US
dc.subject Congruence en_US
dc.subject SBZ-Homomorphism en_US
dc.subject Sheffer Stroke en_US
dc.title Another View of BZ-Algebras en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 6505910883
gdc.author.scopusid 57200450829
gdc.author.scopusid 55960967300
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department İzmir Ekonomi Üniversitesi en_US
gdc.description.departmenttemp [Öner] Tahsi̊n, Department of Mathematics, Ege Üniversitesi, Izmir, Turkey; [Katican] Tugce, Department of Mathematics, Izmir Ekonomi Üniversitesi, Izmir, Turkey; [Borumand Saeid] Arsham, Department of Pure Mathematics, Shahid Bahonar University of Kerman, Kerman, Kerman, Iran, Saveetha School of Engineering, Chennai, TN, India en_US
gdc.description.endpage 135 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 119 en_US
gdc.description.volume 13 en_US
gdc.description.wosquality N/A
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.3737945E-9
gdc.oaire.publicfunded false
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Katıcan, Tuğçe
relation.isAuthorOfPublication 8fd08b0a-b772-4e2d-b78f-a929dbe07675
relation.isAuthorOfPublication.latestForDiscovery 8fd08b0a-b772-4e2d-b78f-a929dbe07675
relation.isOrgUnitOfPublication 9fb4f7d7-bc42-4427-abc8-046d10845333
relation.isOrgUnitOfPublication a42dba5b-3d5d-430e-8f4c-10d6dbc69123
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication.latestForDiscovery 9fb4f7d7-bc42-4427-abc8-046d10845333

Files