1-D Convolutional Neural Networks for Signal Processing Applications

dc.contributor.author Kiranyaz, Serkan
dc.contributor.author İnce, Türker
dc.contributor.author Abdeljaber, O.
dc.contributor.author Avci, O.
dc.contributor.author Gabbouj, M.
dc.date.accessioned 2023-11-25T09:38:54Z
dc.date.available 2023-11-25T09:38:54Z
dc.date.issued 2019
dc.description The Institute of Electrical and Electronics Engineers Signal Processing Society en_US
dc.description 44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 -- 12 May 2019 through 17 May 2019 -- 149034 en_US
dc.description.abstract 1D Convolutional Neural Networks (CNNs) have recently become the state-of-the-art technique for crucial signal processing applications such as patient-specific ECG classification, structural health monitoring, anomaly detection in power electronics circuitry and motor-fault detection. This is an expected outcome as there are numerous advantages of using an adaptive and compact 1D CNN instead of a conventional (2D) deep counterparts. First of all, compact 1D CNNs can be efficiently trained with a limited dataset of 1D signals while the 2D deep CNNs, besides requiring 1D to 2D data transformation, usually need datasets with massive size, e.g., in the »Big Data» scale in order to prevent the well-known »overfitting» problem. 1D CNNs can directly be applied to the raw signal (e.g., current, voltage, vibration, etc.) without requiring any pre- or post-processing such as feature extraction, selection, dimension reduction, denoising, etc. Furthermore, due to the simple and compact configuration of such adaptive 1D CNNs that perform only linear 1D convolutions (scalar multiplications and additions), a real-time and low-cost hardware implementation is feasible. This paper reviews the major signal processing applications of compact 1D CNNs with a brief theoretical background. We will present their state-of-the-art performances and conclude with focusing on some major properties. Keywords - 1-D CNNs, Biomedical Signal Processing, SHM. © 2019 IEEE. en_US
dc.identifier.doi 10.1109/ICASSP.2019.8682194
dc.identifier.isbn 9781479981311
dc.identifier.issn 1520-6149
dc.identifier.scopus 2-s2.0-85068995333
dc.identifier.uri https://doi.org/10.1109/ICASSP.2019.8682194
dc.identifier.uri https://hdl.handle.net/20.500.14365/4977
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Anomaly detection en_US
dc.subject Biomedical signal processing en_US
dc.subject Convolution en_US
dc.subject Fault detection en_US
dc.subject Feature extraction en_US
dc.subject Large dataset en_US
dc.subject Metadata en_US
dc.subject Neural networks en_US
dc.subject Speech communication en_US
dc.subject Structural health monitoring en_US
dc.subject Convolutional neural network en_US
dc.subject Dimension reduction en_US
dc.subject Ecg classifications en_US
dc.subject Low cost hardware en_US
dc.subject Scalar multiplication en_US
dc.subject Signal processing applications en_US
dc.subject State-of-the-art performance en_US
dc.subject State-of-the-art techniques en_US
dc.subject Audio signal processing en_US
dc.title 1-D Convolutional Neural Networks for Signal Processing Applications en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional
gdc.author.scopusid 7801632948
gdc.author.scopusid 56259806600
gdc.author.scopusid 56811553100
gdc.author.scopusid 6701761980
gdc.author.scopusid 7005332419
gdc.bip.impulseclass C2
gdc.bip.influenceclass C3
gdc.bip.popularityclass C2
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department İzmir Ekonomi Üniversitesi en_US
gdc.description.departmenttemp Kiranyaz, S., Department of Electrical Engineering, Qatar University, Qatar; Ince, T., Electrical Electronics Engineering Department, Izmir University of Economics, Turkey; Abdeljaber, O., Department of Civil Engineering, Qatar University, Qatar; Avci, O., Department of Civil Engineering, Qatar University, Qatar; Gabbouj, M., Department of Signal Processing, Tampere University of Technology, Finland en_US
gdc.description.endpage 8364 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 8360 en_US
gdc.description.volume 2019-May en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W2939880928
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 133.0
gdc.oaire.influence 1.8795895E-8
gdc.oaire.isgreen true
gdc.oaire.keywords Metadata
gdc.oaire.keywords Structural health monitoring
gdc.oaire.keywords Speech communication
gdc.oaire.keywords Biomedical signal processing
gdc.oaire.keywords Convolutional Neural Networks (CNNs)
gdc.oaire.keywords Large dataset
gdc.oaire.keywords Convolutional neural network
gdc.oaire.keywords Low cost hardware
gdc.oaire.keywords Anomaly detection
gdc.oaire.keywords Ecg classifications
gdc.oaire.keywords Signal processing applications
gdc.oaire.keywords State-of-the-art techniques
gdc.oaire.keywords Convolution
gdc.oaire.keywords Dimension reduction
gdc.oaire.keywords Feature extraction
gdc.oaire.keywords State-of-the-art performance
gdc.oaire.keywords Scalar multiplication
gdc.oaire.keywords Fault detection
gdc.oaire.keywords Neural networks
gdc.oaire.keywords Audio signal processing
gdc.oaire.popularity 1.541901E-7
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.openalex.collaboration International
gdc.openalex.fwci 31.5900202
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 246
gdc.plumx.crossrefcites 88
gdc.plumx.mendeley 291
gdc.plumx.scopuscites 317
gdc.scopus.citedcount 318
gdc.virtual.author İnce, Türker
relation.isAuthorOfPublication 620fe4b0-bfe7-4e8f-8157-31e93f36a89b
relation.isAuthorOfPublication.latestForDiscovery 620fe4b0-bfe7-4e8f-8157-31e93f36a89b
relation.isOrgUnitOfPublication b02722f0-7082-4d8a-8189-31f0230f0e2f
relation.isOrgUnitOfPublication 26a7372c-1a5e-42d9-90b6-a3f7d14cad44
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication.latestForDiscovery b02722f0-7082-4d8a-8189-31f0230f0e2f

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
4977.pdf
Size:
796.91 KB
Format:
Adobe Portable Document Format