Analysis and Forecasting of Multi-Region Recyclable Waste Datasets With Supervised Machine Learning Models

dc.contributor.advisor Kabak, Kamil Erkan
dc.contributor.author Bal, Gözde Aka
dc.date.accessioned 2024-09-08T12:48:35Z
dc.date.available 2024-09-08T12:48:35Z
dc.date.issued 2024
dc.description 21.11.2024 tarihine kadar kullanımı yazar tarafından kısıtlanmıştır. en_US
dc.description.abstract Sürdürülebilir şehirler için, bölgelerin farklı atık miktarlarını tahmin etmek oldukça önemlidir; böylelikle bu miktarların bir kısmının geri dönüşü, üretim tesislerinde hammadde kullanımını enküçükleyebilecektir ve geridönüşümle karlılığı arttırabilecektir. Bu nedenlerle, bu çalışmanın amacı, farklı zaman aralıklarında ve farklı bölgelerde toplanan geri dönüşüm atık miktarlarını analiz etmektir, sonrasında farklı gözetimli makine öğrenimi yaklaşımları ile atık miktarlarını tahmin etmeyi amaçlamaktadır. Bu tahminler kuruluşların geri dönüşüm stratejilerini daha iyi tahminlerle daha iyi şekillendirmelerine ve en iyi geri dönüşüm toplama ve yatırım politikaları ile maliyetlerinin minimize etmeyi sağlayacaktır. Farklı noktalardan elde edilen geri dönüşüm atık veri setlerindeki belirsizliklerden ve değişkenliklerden dolayı, bu tez çalışması öncelikle geleneksel tahminleme yöntemlerini zaman serisi analizleri ile uygulamaktadır. Sonra, tanımlayıcı ve korrelasyon analizlerini içeren istatistiksel analizlerin dışında ARIMA, K-NN ve XGBoost gibi seçilmiş gözetimli makine öğrenmesi yaklaşımları ile ilave analizleri yapmaktadır. Geleneksel tahmin yöntemleriyle yapılan analizlere göre hareketli ortalama yöntemi, kağıt atıklarında diğer yöntemler arasında 97, plastik atıklarda ise 0,13 MSE değeriyle tüm bölgelerde en iyi tahmin sonuçlarını sağlamaktadır. Denetimli makine öğrenimi yöntemleri analizlerine göre, ARIMA yöntemi bölgelerin çoğunda daha iyi tahminleme sonuçlarını göstermektedir ve en iyi performans gösteren bölge 105 MSE değerine sahiptir. Son olarak, çalışma tahminleme algoritmalarını bir havuzda toplayarak ve en iyi tahminleri tanımlanan tahminleme performansı ölçütlerine göre seçerek otomatik bir tahminleme çerçevesi oluşturmayı amaçlamaktadır. en_US
dc.description.abstract To have sustainable cities, it is quite crucial to forecast the recyclable waste amounts at different points of regions so that the return of some portions of such amounts would allow to minimize the raw material usage at manufacturing facilities and increase profit via recycling. For these reasons, the objective of this study is to analyze the amount of recycled waste collected at different time intervals from different regions, after that it aims to forecast the waste amounts through different supervised machine-learning approaches. These forecasts will benefit organizations to better shape their recycling strategies and minimize costs through optimal recycling collection and investment policies. Due to the uncertainties and variabilities within the collected recycled waste datasets, this thesis first applies traditional forecasting methods with time series analyses. Then, further analyses are performed through supervised machine learning approaches such as ARIMA, K-NN, and XGBoost apart from statistical analyses that cover descriptive and correlation analyses. Based on the analyses conducted by traditional forecasting methods, the moving average method provides the best forecasting results in all regions with MSE value of 97 among other methods for paper waste and 0.13 for plastic waste. Concerning the analyses by supervised machine learning methods, the ARIMA approach shows better forecasting results in the majority of the regions, and it has with MSE value of 105 for the best-performing region. Finally, the study proposes an automated forecasting framework after iteratively combining the forecasting algorithms in a pool and selecting the best forecasts according to predefined performance measures. en_US
dc.identifier.uri https://hdl.handle.net/20.500.14365/5508
dc.language.iso en en_US
dc.publisher İzmir Ekonomi Üniversitesi en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Endüstri ve Endüstri Mühendisliği en_US
dc.subject Industrial and Industrial Engineering en_US
dc.title Analysis and Forecasting of Multi-Region Recyclable Waste Datasets With Supervised Machine Learning Models en_US
dc.title.alternative Denetimli Makine Öğrenme Modelleri ile Çok Bölgeli Geri Dönüştürülebilir Atık Veri Setlerinin Analizi ve Öngörülmesi en_US
dc.type Master Thesis en_US
dspace.entity.type Publication
gdc.author.institutional Bal, Gözde Aka
gdc.coar.access metadata only access
gdc.coar.type text::thesis::master thesis
gdc.description.department İEÜ, Lisansüstü Eğitim Enstitüsü, Endüstri Mühendisliği Ana Bilim Dalı en_US
gdc.description.endpage 172 en_US
gdc.description.publicationcategory Tez en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1 en_US
gdc.description.wosquality N/A
gdc.identifier.yoktezid 865885 en_US
gdc.virtual.author Kabak, Kamil Erkan
relation.isAuthorOfPublication 4da6e23a-f839-48ba-ac14-664534557f26
relation.isAuthorOfPublication.latestForDiscovery 4da6e23a-f839-48ba-ac14-664534557f26
relation.isOrgUnitOfPublication bdb88a44-c66f-45fd-b2ec-de89cb1c93a0
relation.isOrgUnitOfPublication 26a7372c-1a5e-42d9-90b6-a3f7d14cad44
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication.latestForDiscovery bdb88a44-c66f-45fd-b2ec-de89cb1c93a0

Files