Principal Matrix Solutions and Variation of Parameters for Volterra Integro-Dynamic Equations on Time Scales
Loading...
Files
Date
2011
Authors
Adıvar, Murat
Journal Title
Journal ISSN
Volume Title
Publisher
Cambridge Univ Press
Open Access Color
BRONZE
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
We introduce the principal matrix solution Z(t, s) of the linear Volterra-type vector integro-dynamic equation x(Delta)(t) = A(t)x(t) + integral(t)(s) B(t, u)x(u)Delta u and prove that it is the unique matrix solution of Z(Delta t)(t, s) = A(t)Z(t, s) + integral(t)(s) B(t, u)Z(u, s)Delta u, Z(s, s) = I. We also show that the solution of x(Delta)(t) = A(t)x(t) + integral(t)(tau) B(t, u)x(u)Delta u + f(t), x(tau) = x(0) is unique and given by the variation of parameters formula x(t) = Z(t, tau)x(0) + integral(t)(tau) Z(t, sigma(s))f(s)Delta s.
Description
ORCID
Keywords
Discrete-Systems, Stability, Perturbation, Resolvent, Dynamic equations on time scales or measure chains, Integro-ordinary differential equations, Volterra integral equations
Fields of Science
0101 mathematics, 01 natural sciences
Citation
WoS Q
Q4
Scopus Q
Q3

OpenCitations Citation Count
15
Source
Glasgow Mathematıcal Journal
Volume
53
Issue
Start Page
463
End Page
480
PlumX Metrics
Citations
CrossRef : 7
Scopus : 23
Google Scholar™


