Principal Matrix Solutions and Variation of Parameters for Volterra Integro-Dynamic Equations on Time Scales

Loading...
Publication Logo

Date

2011

Authors

Adıvar, Murat

Journal Title

Journal ISSN

Volume Title

Publisher

Cambridge Univ Press

Open Access Color

BRONZE

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Top 10%
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

We introduce the principal matrix solution Z(t, s) of the linear Volterra-type vector integro-dynamic equation x(Delta)(t) = A(t)x(t) + integral(t)(s) B(t, u)x(u)Delta u and prove that it is the unique matrix solution of Z(Delta t)(t, s) = A(t)Z(t, s) + integral(t)(s) B(t, u)Z(u, s)Delta u, Z(s, s) = I. We also show that the solution of x(Delta)(t) = A(t)x(t) + integral(t)(tau) B(t, u)x(u)Delta u + f(t), x(tau) = x(0) is unique and given by the variation of parameters formula x(t) = Z(t, tau)x(0) + integral(t)(tau) Z(t, sigma(s))f(s)Delta s.

Description

Keywords

Discrete-Systems, Stability, Perturbation, Resolvent, Dynamic equations on time scales or measure chains, Integro-ordinary differential equations, Volterra integral equations

Fields of Science

0101 mathematics, 01 natural sciences

Citation

WoS Q

Q4

Scopus Q

Q3
OpenCitations Logo
OpenCitations Citation Count
15

Source

Glasgow Mathematıcal Journal

Volume

53

Issue

Start Page

463

End Page

480
PlumX Metrics
Citations

CrossRef : 7

Scopus : 23

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
2.99412214

Sustainable Development Goals