Analysis of Epileptic Eeg Signals by Using Dynamic Mode Decomposition and Spectrum

dc.contributor.author Cura, Ozlem Karabiber
dc.contributor.author Akan, Aydin
dc.date.accessioned 2023-06-16T12:58:56Z
dc.date.available 2023-06-16T12:58:56Z
dc.date.issued 2021
dc.description.abstract Dynamic mode decomposition (DMD) is a new matrix decomposition method proposed as an iterative solution to problems in fluid flow analysis. Recently, DMD algorithm has successfully been applied to the analysis of non-stationary signals such as neural recordings. In this study, we propose single-channel, and multi-channel EEG based DMD approaches for the analysis of epileptic EEG signals. We investigate the possibility of utilizing the DMD Spectrum for the classification of pre-seizure and seizure EEG segments. We introduce higher-order DMD spectral moments and DMD sub-band powers, and extract them as features for the classification of epileptic EEG signals. Experiments are conducted on multi-channel EEG signals collected from 16 epilepsy patients. Single-channel, and multichannel EEG based DMD approaches have been tested on epileptic EEG data recorded from only right, only left, and both brain hemisphere channels. Performance of various classifiers using the proposed DMD-Spectral based features are compared with that of traditional spectral features. Experimental results reveal that the higher order DMD spectral moments and DMD sub-band power features introduced in this study, outperform the analogous spectral features calculated from traditional power spectrum. (c) 2020 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved. en_US
dc.description.sponsorship Izmir Katip Celebi University Scientific Research Projects Coordination Unit [2019GAPM?, MF0003, 2019TDRFEBE0005] en_US
dc.description.sponsorship This paper was supported by Izmir Katip Celebi University Scientific Research Projects Coordination Unit: Project numbers: 2019GAPM?MF0003 and 2019TDRFEBE0005. en_US
dc.identifier.doi 10.1016/j.bbe.2020.11.0020208-5216/
dc.identifier.issn 0208-5216
dc.identifier.scopus 2-s2.0-85098109225
dc.identifier.uri https://doi.org/10.1016/j.bbe.2020.11.0020208-5216/
dc.identifier.uri https://hdl.handle.net/20.500.14365/1080
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof Bıocybernetıcs And Bıomedıcal Engıneerıng en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Dynamic mode decomposition (DMD) en_US
dc.subject Electroencephalogram (EEG) en_US
dc.subject Epilepsy en_US
dc.subject Epileptic seizure classification en_US
dc.subject Machine learning en_US
dc.subject Automatic Seizure Detection en_US
dc.subject Wavelet Transform en_US
dc.subject Classification en_US
dc.subject Features en_US
dc.title Analysis of Epileptic Eeg Signals by Using Dynamic Mode Decomposition and Spectrum en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57195223021
gdc.author.scopusid 35617283100
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department İzmir Ekonomi Üniversitesi en_US
gdc.description.departmenttemp [Cura, Ozlem Karabiber] Izmir Katip Celebi Univ, Fac Engn & Architecture, Dept Biomed Engn, Izmir, Turkey; [Akan, Aydin] Izmir Univ Econ, Fac Engn, Dept Elect & Elect Engn, Izmir, Turkey en_US
gdc.description.endpage 44 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 28 en_US
gdc.description.volume 41 en_US
gdc.description.wosquality Q1
gdc.identifier.wos WOS:000643728600005
gdc.index.type WoS
gdc.index.type Scopus
gdc.opencitations.count 0
gdc.scopus.citedcount 19
gdc.virtual.author Akan, Aydın
gdc.wos.citedcount 14
relation.isAuthorOfPublication 9b1a1d3d-05af-4982-b7d1-0fefff6ac9fd
relation.isAuthorOfPublication.latestForDiscovery 9b1a1d3d-05af-4982-b7d1-0fefff6ac9fd
relation.isOrgUnitOfPublication b02722f0-7082-4d8a-8189-31f0230f0e2f
relation.isOrgUnitOfPublication 26a7372c-1a5e-42d9-90b6-a3f7d14cad44
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication.latestForDiscovery b02722f0-7082-4d8a-8189-31f0230f0e2f

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
90.pdf
Size:
2.89 MB
Format:
Adobe Portable Document Format