Attention Deficit Hyperactivity Disorder Recognition Based on Intrinsic Time-Scale Decomposition of Eeg Signals

dc.contributor.author Cura, Ozlem Karabiber
dc.contributor.author Atli, Sibel Kocaaslan
dc.contributor.author Akan, Aydin
dc.date.accessioned 2023-06-16T12:58:58Z
dc.date.available 2023-06-16T12:58:58Z
dc.date.issued 2023
dc.description.abstract Attention deficit hyperactivity disorder (ADHD), a neuro-developmental condition, is characterized by various degrees of impulsivity, hyperactivity, and inattention. Treatment of this condition and minimizing its negative impact on learning, working, forming relationships, and quality of life depends heavily on the early identifi-cation. The Electroencephalography (EEG) is a useful neuroimaging technique for understanding ADHD. This study examines the brain activity of children with ADHD by analyzing the EEG signals using the intrinsic time-scale decomposition (ITD). Different combinations of the modes, known as Proper Rotation Components (PRCs), produced by ITD, are used to extract a variety of connectivity-based features (magnitude square coherence, cross power spectral density, correlation coefficient, covariance, cohentropy coefficient, correntropy coefficient). EEG signals of 15 ADHD children and 18 age-matched health children are recorded while resting with the eyes closed. Mentioned features are calculated using different channel pairs chosen from longitudinal and transversal planes. Through various machine learning approaches and a 10-fold cross-validation method, the proposed approach is evaluated to distinguish between ADHD patients and healthy controls. Classification accuracies are obtained for the longitudinal and transverse planes, between 92.90% to 99.90% and 91.70% to 100.00%, respectively. Our results support the remarkable performance of the proposed approach, and represent a substantial advance over similar studies in terms of recognizing and classifying ADHD. en_US
dc.description.sponsorship Izmir University of Economics, Scientific Research Projects Coordination Unit; [2022-7] en_US
dc.description.sponsorship Acknowledgment This work is partially funded by Izmir University of Economics, Scientific Research Projects Coordination Unit, Project no: 2022-7. en_US
dc.identifier.doi 10.1016/j.bspc.2022.104512
dc.identifier.issn 1746-8094
dc.identifier.issn 1746-8108
dc.identifier.issn 1556-5068
dc.identifier.scopus 2-s2.0-85144490630
dc.identifier.uri https://doi.org/10.1016/j.bspc.2022.104512
dc.identifier.uri https://hdl.handle.net/20.500.14365/1090
dc.language.iso en en_US
dc.publisher Elsevier Sci Ltd en_US
dc.relation.ispartof Bıomedıcal Sıgnal Processıng And Control en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Electroencephalography (EEG) en_US
dc.subject Attention Deficit Hyperactivity Disorder en_US
dc.subject (ADHD) en_US
dc.subject Intrinsic Time-Scale Decomposition (ITD) en_US
dc.subject Machine learning en_US
dc.subject Connectivity features en_US
dc.subject Diagnosis en_US
dc.subject Children en_US
dc.title Attention Deficit Hyperactivity Disorder Recognition Based on Intrinsic Time-Scale Decomposition of Eeg Signals en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Akan, Aydin/0000-0001-8894-5794
gdc.author.scopusid 57195223021
gdc.author.scopusid 56709608600
gdc.author.scopusid 35617283100
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department İzmir Ekonomi Üniversitesi en_US
gdc.description.departmenttemp [Cura, Ozlem Karabiber] Izmir Katip Celebi Univ, Dept Biomed Engn, TR-36520 Cigli, Izmir, Turkey; [Atli, Sibel Kocaaslan] Izmir Katip Celebi Univ, Fac Med, Dept Biophys, TR-36520 Cigli, Izmir, Turkey; [Akan, Aydin] Izmir Univ Econ, Dept Elect & Elect Engn, Balcova, TR-35330 Izmir, Turkey en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 81 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4312074706
gdc.identifier.wos WOS:000908986800001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 11.0
gdc.oaire.influence 2.9152023E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.0158935E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 2.24729278
gdc.openalex.normalizedpercentile 0.83
gdc.opencitations.count 6
gdc.plumx.crossrefcites 10
gdc.plumx.mendeley 29
gdc.plumx.newscount 1
gdc.plumx.scopuscites 13
gdc.scopus.citedcount 13
gdc.virtual.author Akan, Aydın
gdc.wos.citedcount 12
relation.isAuthorOfPublication 9b1a1d3d-05af-4982-b7d1-0fefff6ac9fd
relation.isAuthorOfPublication.latestForDiscovery 9b1a1d3d-05af-4982-b7d1-0fefff6ac9fd
relation.isOrgUnitOfPublication b02722f0-7082-4d8a-8189-31f0230f0e2f
relation.isOrgUnitOfPublication 26a7372c-1a5e-42d9-90b6-a3f7d14cad44
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication.latestForDiscovery b02722f0-7082-4d8a-8189-31f0230f0e2f

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
101.pdf
Size:
3.15 MB
Format:
Adobe Portable Document Format