Attention Deficit Hyperactivity Disorder Recognition Based on Intrinsic Time-Scale Decomposition of Eeg Signals
| dc.contributor.author | Cura, Ozlem Karabiber | |
| dc.contributor.author | Atli, Sibel Kocaaslan | |
| dc.contributor.author | Akan, Aydin | |
| dc.date.accessioned | 2023-06-16T12:58:58Z | |
| dc.date.available | 2023-06-16T12:58:58Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract | Attention deficit hyperactivity disorder (ADHD), a neuro-developmental condition, is characterized by various degrees of impulsivity, hyperactivity, and inattention. Treatment of this condition and minimizing its negative impact on learning, working, forming relationships, and quality of life depends heavily on the early identifi-cation. The Electroencephalography (EEG) is a useful neuroimaging technique for understanding ADHD. This study examines the brain activity of children with ADHD by analyzing the EEG signals using the intrinsic time-scale decomposition (ITD). Different combinations of the modes, known as Proper Rotation Components (PRCs), produced by ITD, are used to extract a variety of connectivity-based features (magnitude square coherence, cross power spectral density, correlation coefficient, covariance, cohentropy coefficient, correntropy coefficient). EEG signals of 15 ADHD children and 18 age-matched health children are recorded while resting with the eyes closed. Mentioned features are calculated using different channel pairs chosen from longitudinal and transversal planes. Through various machine learning approaches and a 10-fold cross-validation method, the proposed approach is evaluated to distinguish between ADHD patients and healthy controls. Classification accuracies are obtained for the longitudinal and transverse planes, between 92.90% to 99.90% and 91.70% to 100.00%, respectively. Our results support the remarkable performance of the proposed approach, and represent a substantial advance over similar studies in terms of recognizing and classifying ADHD. | en_US |
| dc.description.sponsorship | Izmir University of Economics, Scientific Research Projects Coordination Unit; [2022-7] | en_US |
| dc.description.sponsorship | Acknowledgment This work is partially funded by Izmir University of Economics, Scientific Research Projects Coordination Unit, Project no: 2022-7. | en_US |
| dc.identifier.doi | 10.1016/j.bspc.2022.104512 | |
| dc.identifier.issn | 1746-8094 | |
| dc.identifier.issn | 1746-8108 | |
| dc.identifier.issn | 1556-5068 | |
| dc.identifier.scopus | 2-s2.0-85144490630 | |
| dc.identifier.uri | https://doi.org/10.1016/j.bspc.2022.104512 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14365/1090 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier Sci Ltd | en_US |
| dc.relation.ispartof | Bıomedıcal Sıgnal Processıng And Control | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Electroencephalography (EEG) | en_US |
| dc.subject | Attention Deficit Hyperactivity Disorder | en_US |
| dc.subject | (ADHD) | en_US |
| dc.subject | Intrinsic Time-Scale Decomposition (ITD) | en_US |
| dc.subject | Machine learning | en_US |
| dc.subject | Connectivity features | en_US |
| dc.subject | Diagnosis | en_US |
| dc.subject | Children | en_US |
| dc.title | Attention Deficit Hyperactivity Disorder Recognition Based on Intrinsic Time-Scale Decomposition of Eeg Signals | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Akan, Aydin/0000-0001-8894-5794 | |
| gdc.author.scopusid | 57195223021 | |
| gdc.author.scopusid | 56709608600 | |
| gdc.author.scopusid | 35617283100 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | İzmir Ekonomi Üniversitesi | en_US |
| gdc.description.departmenttemp | [Cura, Ozlem Karabiber] Izmir Katip Celebi Univ, Dept Biomed Engn, TR-36520 Cigli, Izmir, Turkey; [Atli, Sibel Kocaaslan] Izmir Katip Celebi Univ, Fac Med, Dept Biophys, TR-36520 Cigli, Izmir, Turkey; [Akan, Aydin] Izmir Univ Econ, Dept Elect & Elect Engn, Balcova, TR-35330 Izmir, Turkey | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.volume | 81 | en_US |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W4312074706 | |
| gdc.identifier.wos | WOS:000908986800001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 11.0 | |
| gdc.oaire.influence | 2.9152023E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 1.0158935E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 2.24729278 | |
| gdc.openalex.normalizedpercentile | 0.83 | |
| gdc.opencitations.count | 6 | |
| gdc.plumx.crossrefcites | 10 | |
| gdc.plumx.mendeley | 29 | |
| gdc.plumx.newscount | 1 | |
| gdc.plumx.scopuscites | 13 | |
| gdc.scopus.citedcount | 13 | |
| gdc.virtual.author | Akan, Aydın | |
| gdc.wos.citedcount | 12 | |
| relation.isAuthorOfPublication | 9b1a1d3d-05af-4982-b7d1-0fefff6ac9fd | |
| relation.isAuthorOfPublication.latestForDiscovery | 9b1a1d3d-05af-4982-b7d1-0fefff6ac9fd | |
| relation.isOrgUnitOfPublication | b02722f0-7082-4d8a-8189-31f0230f0e2f | |
| relation.isOrgUnitOfPublication | 26a7372c-1a5e-42d9-90b6-a3f7d14cad44 | |
| relation.isOrgUnitOfPublication | e9e77e3e-bc94-40a7-9b24-b807b2cd0319 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | b02722f0-7082-4d8a-8189-31f0230f0e2f |
Files
Original bundle
1 - 1 of 1
