Qualitative Analysis of Nonlinear Volterra Integral Equations on Time Scales Using Resolvent and Lyapunov Functionals

dc.contributor.author Adıvar, Murat
dc.contributor.author Raffoul, Youssef N.
dc.date.accessioned 2023-06-16T12:58:53Z
dc.date.available 2023-06-16T12:58:53Z
dc.date.issued 2016
dc.description.abstract In this paper we use the notion of the resolvent equation and Lyapunov's method to study boundedness and integrability of the solutions of the nonlinear Volterra integral equation on time scales x(t) = a(t) - integral(t)(t0) C(t, s)G(s, x(s)) Delta s, t is an element of[t(0), infinity) boolean AND T. In particular, the existence of bounded solutions with various L-P properties are studied under suitable conditions on the functions involved in the above Volterra integral equation. At the end of the paper we display some examples on different time scales. (C) 2015 Elsevier Inc. All rights reserved. en_US
dc.identifier.doi 10.1016/j.amc.2015.09.087
dc.identifier.issn 0096-3003
dc.identifier.issn 1873-5649
dc.identifier.scopus 2-s2.0-84946111477
dc.identifier.uri https://doi.org/10.1016/j.amc.2015.09.087
dc.identifier.uri https://hdl.handle.net/20.500.14365/1057
dc.language.iso en en_US
dc.publisher Elsevier Science Inc en_US
dc.relation.ispartof Applıed Mathematıcs And Computatıon en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Lyapunov Functionals en_US
dc.subject Non-negative solution en_US
dc.subject Resolvent en_US
dc.subject Time scales en_US
dc.subject Volterra integral equation en_US
dc.subject Perturbation en_US
dc.subject Stability en_US
dc.title Qualitative Analysis of Nonlinear Volterra Integral Equations on Time Scales Using Resolvent and Lyapunov Functionals en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id ADIVAR, Murat/0000-0002-9707-2005
gdc.author.scopusid 55913381700
gdc.author.scopusid 6602902226
gdc.author.wosid ADIVAR, Murat/N-3430-2018
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department İzmir Ekonomi Üniversitesi en_US
gdc.description.departmenttemp [Adıvar, Murat] Izmir Univ Econ, Dept Math, TR-35330 Izmir, Turkey; [Raffoul, Youssef N.] Univ Dayton, Dept Math, Dayton, OH 45469 USA en_US
gdc.description.endpage 266 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 258 en_US
gdc.description.volume 273 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2176918492
gdc.identifier.wos WOS:000365613400025
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.7317932E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Dynamic equations on time scales or measure chains
gdc.oaire.keywords Volterra integral equations
gdc.oaire.keywords time scales
gdc.oaire.keywords non-negative solution
gdc.oaire.keywords resolvent
gdc.oaire.keywords Lyapunov functionals
gdc.oaire.keywords Volterra integral equation
gdc.oaire.popularity 2.364538E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 1.97027311
gdc.openalex.normalizedpercentile 0.87
gdc.opencitations.count 3
gdc.plumx.crossrefcites 2
gdc.plumx.facebookshareslikecount 15
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 7
gdc.scopus.citedcount 7
gdc.virtual.author Adivar, Murat
gdc.wos.citedcount 3
relation.isAuthorOfPublication 8450489c-55fd-473a-80ec-8869eb6fe1b9
relation.isAuthorOfPublication.latestForDiscovery 8450489c-55fd-473a-80ec-8869eb6fe1b9
relation.isOrgUnitOfPublication 9fb4f7d7-bc42-4427-abc8-046d10845333
relation.isOrgUnitOfPublication a42dba5b-3d5d-430e-8f4c-10d6dbc69123
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication.latestForDiscovery 9fb4f7d7-bc42-4427-abc8-046d10845333

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
64.pdf
Size:
302.52 KB
Format:
Adobe Portable Document Format