Synthetic Interpretations: AI-Driven Scoring Framework for Architectural Design Evaluation

dc.contributor.author Bingöl, K.
dc.contributor.author Koç, M.
dc.contributor.author Çiçek, S.
dc.contributor.author Aksu, M.S.
dc.contributor.author Öztürk, E.
dc.contributor.author Mersin, G.
dc.contributor.author Basarir, L.
dc.date.accessioned 2026-01-25T16:26:45Z
dc.date.available 2026-01-25T16:26:45Z
dc.date.issued 2025
dc.description Bentley Advancing Infrastructure; POLARKON; TUBITAK en_US
dc.description.abstract While artificial intelligence (AI) has significantly influenced architectural design through generative tasks like conceptual exploration and visualization, its capacity for nuanced qualitative evaluation remains underexplored. Effective evaluation requires a convergence of subjective interpretation and objective rigor, addressing contextual relationships, formal qualities, adherence to design principles, programmatic functions, construction strategies, structural systems, and sustainable practices. This research addresses these challenges by developing an AI-driven scoring framework, ArchiJury, based on synthetic architectural reviews aligned with established evaluation criteria. Two distinct AI models form the methodological basis of the study: The first employs visual transformer models and a synergy simulation algorithm for precise, context-based criterion-specific evaluation. The second uses a ResNet-18 deep-learning architecture for multi-criteria holistic scoring, trained end-to-end with an annotated dataset and optimized through mean squared error (MSE) loss, and utilizes Grad-CAM heatmaps for interpretability by visually representing the influential image regions guiding AI scoring decisions. The outputs of both models are comparatively discussed with human expert evaluations to critically assess AI’s potential and limitations, and implications of AI driven evaluation, clarifying how these computational methods align or diverge from expert judgment and exploring their significance for scalable, consistent, and nuanced architectural evaluation. © 2025, Education and research in Computer Aided Architectural Design in Europe. All rights reserved. en_US
dc.identifier.isbn 9789491207136
dc.identifier.isbn 9789491207105
dc.identifier.isbn 9789491207129
dc.identifier.isbn 9780954118396
dc.identifier.isbn 9789491207358
dc.identifier.isbn 9789491207051
dc.identifier.isbn 9780954118372
dc.identifier.isbn 9789491207235
dc.identifier.isbn 9789491207389
dc.identifier.isbn 9789491207228
dc.identifier.issn 2684-1843
dc.identifier.scopus 2-s2.0-105026151018
dc.identifier.uri https://hdl.handle.net/20.500.14365/8653
dc.language.iso en en_US
dc.publisher Education and Research in Computer Aided Architectural Design in Europe en_US
dc.relation.ispartof Proceedings of the International Conference on Education and Research in Computer Aided Architectural Design in Europe -- 43rd Conference on Education and Research in Computer Aided Architectural Design in Europe, eCAADe 2025 -- 2025-09-01 through 2025-09-05 -- Ankara -- 344709 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject AI in Architectural Design Evaluation en_US
dc.subject Archijury en_US
dc.subject Architectural Design Evaluation en_US
dc.subject Scoring en_US
dc.subject Visual Transformer Models en_US
dc.title Synthetic Interpretations: AI-Driven Scoring Framework for Architectural Design Evaluation en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57212446612
gdc.author.scopusid 58611958700
gdc.author.scopusid 57894895400
gdc.author.scopusid 60260661900
gdc.author.scopusid 60260386700
gdc.author.scopusid 60260197900
gdc.author.scopusid 60260198000
gdc.description.department İzmir Ekonomi Üniversitesi en_US
gdc.description.departmenttemp [Bingöl] Kaan, UMAI Lab (Unified Methods of Artificial Intelligence Laboratory), Turkey; [Koç] Mustafa, İstanbul Teknik Üniversitesi, Istanbul, Turkey; [Çiçek] Selen, İstanbul Teknik Üniversitesi, Istanbul, Turkey; [Aksu] Mehmet Sadık, UMAI Lab (Unified Methods of Artificial Intelligence Laboratory), Turkey; [Öztürk] Emre, UMAI Lab (Unified Methods of Artificial Intelligence Laboratory), Turkey; [Mersin] Gizem, UMAI Lab (Unified Methods of Artificial Intelligence Laboratory), Turkey; [Akmaz] Oben, UMAI Lab (Unified Methods of Artificial Intelligence Laboratory), Turkey; [Basarir] Lale, Izmir Ekonomi Üniversitesi, Izmir, Turkey en_US
gdc.description.endpage 70 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 61 en_US
gdc.description.volume 1 en_US
gdc.description.wosquality N/A
gdc.index.type Scopus
gdc.scopus.citedcount 0
gdc.virtual.author Çiçek, Selen
relation.isAuthorOfPublication e9af1035-376c-4696-a886-78d55b5eeda9
relation.isAuthorOfPublication.latestForDiscovery e9af1035-376c-4696-a886-78d55b5eeda9
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication cd37d519-a968-447a-9e22-8300190b3e8a
relation.isOrgUnitOfPublication 5d436958-dbe8-4236-b4d5-2e904c1794f1
relation.isOrgUnitOfPublication.latestForDiscovery e9e77e3e-bc94-40a7-9b24-b807b2cd0319

Files