Existence of Resolvent for Volterra Integral Equations on Time Scales

dc.contributor.author Adıvar, Murat
dc.contributor.author Raffoul, Youssef N.
dc.date.accessioned 2023-06-16T14:11:52Z
dc.date.available 2023-06-16T14:11:52Z
dc.date.issued 2010
dc.description.abstract We introduce the concept of 'shift operators' in order to establish sufficient conditions for the existence of the resolvent for the Volterra integral equation x(t) = f(t) + integral(t)(t0)a(t, s)x(s)Delta s, t(0) is an element of T-kappa, on time scales. The paper will serve as the foundation for future research on the qualitative analysis of solutions of Volterra integral equations on time scales, using the notion of the resolvent. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey en_US
dc.description.sponsorship This work was supported by the Scientific and Technological Research Council of Turkey. en_US
dc.identifier.doi 10.1017/S0004972709001166
dc.identifier.issn 0004-9727
dc.identifier.issn 1755-1633
dc.identifier.scopus 2-s2.0-77957355924
dc.identifier.uri https://doi.org/10.1017/S0004972709001166
dc.identifier.uri https://hdl.handle.net/20.500.14365/1491
dc.language.iso en en_US
dc.publisher Cambridge Univ Press en_US
dc.relation.ispartof Bulletın of the Australıan Mathematıcal Socıety en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject existence en_US
dc.subject resolvent en_US
dc.subject shift operator en_US
dc.subject time scales en_US
dc.subject Volterra integral equation en_US
dc.title Existence of Resolvent for Volterra Integral Equations on Time Scales en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 55913381700
gdc.author.scopusid 6602902226
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department İzmir Ekonomi Üniversitesi en_US
gdc.description.departmenttemp [Adıvar, Murat] Izmir Univ Econ, Dept Math, TR-35330 Izmir, Turkey; [Raffoul, Youssef N.] Univ Dayton, Dept Math, Dayton, OH 45469 USA en_US
gdc.description.endpage 155 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 139 en_US
gdc.description.volume 82 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W2101648011
gdc.identifier.wos WOS:000280426600013
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype BRONZE
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 6.0391114E-9
gdc.oaire.isgreen false
gdc.oaire.keywords shift operator
gdc.oaire.keywords Volterra integral equations
gdc.oaire.keywords time scales
gdc.oaire.keywords resolvent
gdc.oaire.keywords Volterra integral equation
gdc.oaire.popularity 6.2034204E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 5.69603983
gdc.openalex.normalizedpercentile 0.96
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 32
gdc.plumx.crossrefcites 20
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 52
gdc.scopus.citedcount 52
gdc.virtual.author Adivar, Murat
gdc.wos.citedcount 37
relation.isAuthorOfPublication 8450489c-55fd-473a-80ec-8869eb6fe1b9
relation.isAuthorOfPublication.latestForDiscovery 8450489c-55fd-473a-80ec-8869eb6fe1b9
relation.isOrgUnitOfPublication 9fb4f7d7-bc42-4427-abc8-046d10845333
relation.isOrgUnitOfPublication a42dba5b-3d5d-430e-8f4c-10d6dbc69123
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication.latestForDiscovery 9fb4f7d7-bc42-4427-abc8-046d10845333

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1491.pdf
Size:
191.65 KB
Format:
Adobe Portable Document Format