Existence of Periodic Solutions in Shifts Delta(+/-) for Neutral Nonlinear Dynamic Systems
| dc.contributor.author | Adıvar, Murat | |
| dc.contributor.author | Koyuncuoglu, Halis Can | |
| dc.contributor.author | Raffoul, Youssef N. | |
| dc.date.accessioned | 2023-06-16T12:58:53Z | |
| dc.date.available | 2023-06-16T12:58:53Z | |
| dc.date.issued | 2014 | |
| dc.description.abstract | This paper focuses on the existence of a periodic solution of the delay neutral nonlinear dynamic systems x(Delta)(t) = A(t)x(t) + Q(Delta)(t, x(delta (-) (s, t))) + G(t, x(t), x(delta (-) (s, t))). In our analysis, we utilize a new periodicity concept in terms of shifts operators, which allows us to extend the concept of periodicity to time scales where the additivity requirement t +/- T is an element of T for all t is an element of T and for a fixed T > 0, may not hold. More importantly, the new concept will easily handle time scales that are not periodic in the conventional way such as; (q(z)) over bar and boolean OR(infinity)(k-1) [3(+/- k), 2.3(+/- k)] boolean OR {0}. Hence, we will develop the tool that enables us to investigate the existence of periodic solutions of q-difference systems. Since we are dealing with systems, in order to convert our equation to an integral systems, we resort to the transition matrix of the homogeneous Floquet system y(Delta)(t) = A(t)y(t) and then make use of Krasnoselskii's fixed point theorem to obtain a fixed point. (C) 2014 Elsevier Inc. All rights reserved. | en_US |
| dc.description.sponsorship | Scientific and Technological Research Council of Turkey | en_US |
| dc.description.sponsorship | This study is supported by The Scientific and Technological Research Council of Turkey. | en_US |
| dc.identifier.doi | 10.1016/j.amc.2014.05.062 | |
| dc.identifier.issn | 0096-3003 | |
| dc.identifier.issn | 1873-5649 | |
| dc.identifier.scopus | 2-s2.0-84902683089 | |
| dc.identifier.uri | https://doi.org/10.1016/j.amc.2014.05.062 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14365/1055 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier Science Inc | en_US |
| dc.relation.ispartof | Applıed Mathematıcs And Computatıon | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Fixed point | en_US |
| dc.subject | Floquet theory | en_US |
| dc.subject | Krasnoselskii | en_US |
| dc.subject | Neutral nonlinear dynamic system | en_US |
| dc.subject | Periodicity | en_US |
| dc.subject | Shift operators | en_US |
| dc.subject | Equations | en_US |
| dc.title | Existence of Periodic Solutions in Shifts Delta(+/-) for Neutral Nonlinear Dynamic Systems | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | ADIVAR, Murat/0000-0002-9707-2005 | |
| gdc.author.scopusid | 55913381700 | |
| gdc.author.scopusid | 55815809700 | |
| gdc.author.scopusid | 6602902226 | |
| gdc.author.wosid | ADIVAR, Murat/N-3430-2018 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | İzmir Ekonomi Üniversitesi | en_US |
| gdc.description.departmenttemp | [Adıvar, Murat; Koyuncuoglu, Halis Can] Izmir Univ Econ, Dept Math, TR-35330 Izmir, Turkey; [Raffoul, Youssef N.] Univ Dayton, Dept Math, Dayton, OH 45469 USA | en_US |
| gdc.description.endpage | 339 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 328 | en_US |
| gdc.description.volume | 242 | en_US |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2592496267 | |
| gdc.identifier.wos | WOS:000340563000029 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | BRONZE | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 1.0 | |
| gdc.oaire.influence | 2.6386457E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Mathematics - Classical Analysis and ODEs | |
| gdc.oaire.keywords | Classical Analysis and ODEs (math.CA) | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Primary 34K13, 34C25, Secondary 39A13, 34N05 | |
| gdc.oaire.popularity | 2.171325E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.4530942 | |
| gdc.openalex.normalizedpercentile | 0.7 | |
| gdc.opencitations.count | 3 | |
| gdc.plumx.crossrefcites | 2 | |
| gdc.plumx.scopuscites | 7 | |
| gdc.scopus.citedcount | 7 | |
| gdc.virtual.author | Adivar, Murat | |
| gdc.wos.citedcount | 7 | |
| relation.isAuthorOfPublication | 8450489c-55fd-473a-80ec-8869eb6fe1b9 | |
| relation.isAuthorOfPublication.latestForDiscovery | 8450489c-55fd-473a-80ec-8869eb6fe1b9 | |
| relation.isOrgUnitOfPublication | 9fb4f7d7-bc42-4427-abc8-046d10845333 | |
| relation.isOrgUnitOfPublication | a42dba5b-3d5d-430e-8f4c-10d6dbc69123 | |
| relation.isOrgUnitOfPublication | e9e77e3e-bc94-40a7-9b24-b807b2cd0319 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 9fb4f7d7-bc42-4427-abc8-046d10845333 |
Files
Original bundle
1 - 1 of 1
