Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1114
Title: Stability and periodicity in dynamic delay equations
Authors: Adıvar, Murat
Raffoul, Youssef N.
Keywords: Delay dynamic equations
Fixed point theory
Lyapunov
Periodic solutions
Stability
Time scales
Publisher: Pergamon-Elsevier Science Ltd
Abstract: Let T be an arbitrary time scale that is unbounded above. By means of a variation of Lyapunov's method and contraction mapping principle this paper handles asymptotic stability of the zero solution of the completely delayed dynamic equations x(Delta)(t) = -a(t)x(delta(t))delta(Delta)d(t). Moreover, if T is a periodic time scale, then necessary conditions are given for the existence of a unique periodic solution of the above mentioned equation. (c) 2009 Elsevier Ltd. All rights reserved.
URI: https://doi.org/10.1016/j.camwa.2009.03.065
https://hdl.handle.net/20.500.14365/1114
ISSN: 0898-1221
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
127.pdf491.94 kBAdobe PDFView/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

28
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

21
checked on Nov 20, 2024

Page view(s)

72
checked on Nov 18, 2024

Download(s)

16
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.