Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1114
Title: Stability and Periodicity in Dynamic Delay Equations
Authors: Adıvar, Murat
Raffoul, Youssef N.
Keywords: Delay dynamic equations
Fixed point theory
Lyapunov
Periodic solutions
Stability
Time scales
Publisher: Pergamon-Elsevier Science Ltd
Abstract: Let T be an arbitrary time scale that is unbounded above. By means of a variation of Lyapunov's method and contraction mapping principle this paper handles asymptotic stability of the zero solution of the completely delayed dynamic equations x(Delta)(t) = -a(t)x(delta(t))delta(Delta)d(t). Moreover, if T is a periodic time scale, then necessary conditions are given for the existence of a unique periodic solution of the above mentioned equation. (c) 2009 Elsevier Ltd. All rights reserved.
URI: https://doi.org/10.1016/j.camwa.2009.03.065
https://hdl.handle.net/20.500.14365/1114
ISSN: 0898-1221
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
127.pdf491.94 kBAdobe PDFView/Open
Show full item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.