Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1349
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKiranyaz, Serkan-
dc.contributor.authorMalik, Junaid-
dc.contributor.authorAbdallah, Habib Ben-
dc.contributor.authorİnce, Türker-
dc.contributor.authorIosifidis, Alexandros-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T14:11:18Z-
dc.date.available2023-06-16T14:11:18Z-
dc.date.issued2021-
dc.identifier.issn0893-6080-
dc.identifier.issn1879-2782-
dc.identifier.urihttps://doi.org/10.1016/j.neunet.2021.02.028-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1349-
dc.description.abstractOperational Neural Networks (ONNs) have recently been proposed to address the well-known limitations and drawbacks of conventional Convolutional Neural Networks (CNNs) such as network homogeneity with the sole linear neuron model. ONNs are heterogeneous networks with a generalized neuron model. However the operator search method in ONNs is not only computationally demanding, but the network heterogeneity is also limited since the same set of operators will then be used for all neurons in each layer. Moreover, the performance of ONNs directly depends on the operator set library used, which introduces a certain risk of performance degradation especially when the optimal operator set required for a particular task is missing from the library. In order to address these issues and achieve an ultimate heterogeneity level to boost the network diversity along with computational efficiency, in this study we propose Self-organized ONNs (Self-ONNs) with generative neurons that can adapt (optimize) the nodal operator of each connection during the training process. Moreover, this ability voids the need of having a fixed operator set library and the prior operator search within the library in order to find the best possible set of operators. We further formulate the training method to back-propagate the error through the operational layers of Self-ONNs. Experimental results over four challenging problems demonstrate the superior learning capability and computational efficiency of Self-ONNs over conventional ONNs and CNNs. (C) 2021 The Author(s). Published by Elsevier Ltd.en_US
dc.description.sponsorshipQatar National Research Fund 103 (QNRF) [NPRP11S-0108-104 180228]; Tampere Universityen_US
dc.description.sponsorshipThis work was supported by the Qatar National Research Fund 103 (QNRF) through project Grant NPRP11S-0108-104 180228 and Tampere University. Open Access funding provided by Tampere University.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofNeural Networksen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectConvolutional Neural Networksen_US
dc.subjectOperational Neural Networksen_US
dc.subjectGenerative neuronsen_US
dc.subjectHeterogeneous networksen_US
dc.titleSelf-organized Operational Neural Networks with Generative Neuronsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.neunet.2021.02.028-
dc.identifier.pmid33857707en_US
dc.identifier.scopus2-s2.0-85103972773en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridGabbouj, Moncef/0000-0002-9788-2323-
dc.authoridMalik, Hafiz Muhammad Junaid/0000-0002-2750-4028-
dc.authoridBen Abdallah, Habib/0000-0002-6129-3180-
dc.authoridIosifidis, Alexandros/0000-0003-4807-1345-
dc.authoridkiranyaz, serkan/0000-0003-1551-3397-
dc.authorwosidGabbouj, Moncef/G-4293-2014-
dc.authorwosidIosifidis, Alexandros/G-2433-2013-
dc.authorscopusid7801632948-
dc.authorscopusid57201589931-
dc.authorscopusid57219741097-
dc.authorscopusid56259806600-
dc.authorscopusid36720841400-
dc.authorscopusid7005332419-
dc.identifier.volume140en_US
dc.identifier.startpage294en_US
dc.identifier.endpage308en_US
dc.identifier.wosWOS:000652667800004en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
386.pdf4.28 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

47
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

40
checked on Nov 20, 2024

Page view(s)

234
checked on Nov 18, 2024

Download(s)

38
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.