Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/1574
Title: | A Neuroevolutionary Approach To Stochastic Inventory Control in Multi-Echelon Systems | Authors: | Prestwich, S. D. Tarim, S. A. Rossi, R. Hnich, B. |
Keywords: | inventory control neural networks evolutionary algorithms neuroevolution multi-echelon systems Noisy Genetic Algorithm Supply Chains Environments Optimization Uncertainty Management Design Model |
Publisher: | Taylor & Francis Ltd | Abstract: | Stochastic inventory control in multi-echelon systems poses hard problems in optimisation under uncertainty. Stochastic programming can solve small instances optimally, and approximately solve larger instances via scenario reduction techniques, but it cannot handle arbitrary nonlinear constraints or other non-standard features. Simulation optimisation is an alternative approach that has recently been applied to such problems, using policies that require only a few decision variables to be determined. However, to find optimal or near-optimal solutions we must consider exponentially large scenario trees with a corresponding number of decision variables. We propose instead a neuroevolutionary approach: using an artificial neural network to compactly represent the scenario tree, and training the network by a simulation-based evolutionary algorithm. We show experimentally that this method can quickly find high-quality plans using networks of a very simple form. | URI: | https://doi.org/10.1080/00207543.2011.574503 https://hdl.handle.net/20.500.14365/1574 |
ISSN: | 0020-7543 |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
10
checked on Apr 2, 2025
WEB OF SCIENCETM
Citations
7
checked on Apr 2, 2025
Page view(s)
78
checked on Mar 31, 2025
Download(s)
8
checked on Mar 31, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.